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The goal of this program is to identify,- develop and evaluate 
materials and processes for the low cost encapsulation of silicon 
photovoltaic cells consistant with the FSA objective of achieving a 
solar array at a.manufactured cost of $0.70 per peak watt ($70/m2) 
(1980 dollars). 

Phase I at Springborn Laboratories has been concerned with the 
identification and/or development of materials and classes of materials 
to provide specific functions in the construction of PV modules. This 
includes pottants, outer cover films, substrates, ultraviolet stabilizers, 
back covers and adhesive systems. Phase II activities have now been 
started in which these materials are being technically optimized and eval­
uated by accelerated aging studies and lifetime estimations. 

To date, aging studies have emphasized pottant materials due to their 
critical importance in module function. Four pottants were developed in 
this program; EVA and EMA for lamination, butyl acrylate and aliphatic 
urethane for the casting process. Work is continuing on the "technology 
readiness" phase of these materials, which includes extended studies of 
antioxidants, ultraviolet absorbers, metal deactivators, crosslinking 
agents and test methodologies. 

Four major properties are considered to be relevant for determining 
module service life: (A) mechanical; creep re~istance, modulus, tensile 

,strength, (B) optical; integrated transmission 0.4 to 1.1 microns, (C) 
chemical; inertness with respect to metals ~nd other components, retention 
of stabilizers, etc. and (D) electrical; maintaining effective isolation of 
conductive components. These properties were all measured after exposing 
polymer (pottant) specimens to three types of accelerated stress; thermal, 
ultraviolet and metal catalysis. These conditions give rise to a large 
number of complex interrelated free radical reactions that result in the 
deterioration of polymeric materials. (5) The progress of this degradation 
was assessed with a routine test sequence and the resulting data was then 
used for "empirical modeling" of material behavior and lifetime prediction. 
Such data may be used in mathematical schemes such as first or~er kinetics, 
Arrhenius, induction period, Weibul or some other treatment.(7 

Note: Numbers in parenthesis refer to VU graph numbers. 
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In all experiments the data was plotted as log % property retained 
versus time to yield generally useful graphs of material behavior. The 
first property to show change is color (yellow) and was determined quanti­
tatively by spectroscopy as %T at 400 nm. The total optical transmission, 
however, (400 nm to 800 nm), retains a surprisingly high value, even with 
severe yellowing. Specimens retaining only 10% of the original trans­
mission at 400 nm were still found to have 74% total integrated trans­
mission. The mechanical properties during aging were, ,for the most part, 
unaffected. When physical deterioration was observed, the decrease in 
elongation at break was the first characteristic to change, followed by 
the decay of tensile strength. The dielectric strength (insulation 
breakdown) was found to be the least variable of the properties measured 
and retained 100% of control values in all but the most extreme cases of 
degradation. 

Thermal aging (10-16)was conducted in the dark in atmospheres of air 
and nitrogen at temperatures of 60°, 85°, 105° and 130°C. The results' 
to date show that the candidate pottants have very good thermal stabil­
ity, with no life limiting degradation occurring at 105°C. Specimens 
of EVA have survived 7,200 hours at 90°C with virtually no change, and 
retain 91% integrated optical transmission.(13) 

The life limits that are discernable at the 130°C condition and are: 
polyurethane - 250 hours, and EVA - approximately 2,000 hours. No real 
difference was noticed between the air and nitrogen conditions. 

The ultraviolet stress condition was provided by exposure to a med­
ium pressure mercury lamp (General Electric RS/4) at a temperature of 
50°C. In terms of time integrated UV energy , 1300 hours of RS/4is 
equivalent to one year of outdoor (AM-I) solar ultraviolet.(19) Refer­
ence materials, unstabilized poly{propylene) and poly(ethylene) were 20) 
totally degraded by this condition in 200 and 600 hours respectively.( 
To date the following materials have survived without change: EMA - 10,000 
hours, Urethane - 8,000 hours, Tedlar 100BG30UT - 25,000 hours, and 
EVA, an astonishing 35,000 hours. (21, 22 ) For EVA, this is equivalent, 
in UV energy, to 27 years of outdoor exposure and without the benefit of 
a glass (or other) covering. Unstabilized EVA base polymer (Elvax 150) 
degraded within 500 hours. Life limits for pottants under RS/4 exposure 
were found to be: Butyl acrylate - 10,000 hours, and PVB - 500 hours.(25-26) 

Metal catalyzed oxidation in the presence of cQPper was discovered to 
be the most severe condition examined so far.(31-34J Pottant compounds were 
molded around copper screens and the color (%T-400 nm) measured after periods of 
thermal soak at 105°C. All pottants were found to degrade rapidly,and all 
reached end of life (complete deterioration) in about 400 hours. Formula-
tions compounded with metal deactivators (ion chelators) and specimens in 
which the copper had been treated with silane primer both demonstrate im-
proved performance and are still under test (out to 1,000 hours). (36-39) 
No metal reactions were found with aluminum or 60/40 solder. 
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In summary, color (yellowing) was found to be the first quantifiable 
property change. This and the other properties showed predominantly 
"induction period" type behavior during aging in which the measured values 
began to change rapidly at a certain point in time. Thermal stability and 
ultraviolet resistance of the candidate encapsulation materials was gen­
erally found to be very good, however exposure to metallic copper should 
be stringently avoided due to intense catalytic oxidation. Future exper­
iments will continue with these evaluations and also include higher stress 
conditions to evaluate failures and material performance in shorter periods 
of time. 
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Figure 3. Candidate Polymer Encapsulation Materials 

POTTANTS: MECHANICAL STRESS RELIEF. ELECTP.ICAL ISOLATION. 
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Figure 4. Encapsulant Properties 

(MAJOR EMPHASIS ON POTTANTS) 
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Figur~ 5. Polymer Degradation 

RESULTS IN DECREASE OF DESIRED PROPERTIES SUCH AS 
TENSILE STRENGTH. ELONGATION. TRANSPARENCY. DIELECTRIC 
STRENGTH. ETC. 
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Figure 6. Encapsulant Degradation Studies 
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Figure 7. Data Correlation 

OVERALL DEGRADATION REACTION IS COMPOSITE OF MANY 
COMPETING CHEMICAL REACTIONS IN COMPLEX RELATIONSHIP 

DATA TREATMENT 
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Figure 8. Data Correlation (Cont'd) 
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• . INFORMATION USEFUL WITHOUT 
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Figure 9. Encapsulant life-Prediction Thermal-Aging Program 
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Figure 10. Thermal Degradation 

• FREE R4DICAL CHAIN REACTIONS ~ITH OXYGEN: 
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Figure 11. Thermolysis of EVA (Acetic Acid Evolution) 
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Figure 12. Differential Thermal Analysis (DTA) 

DETERMINE EARLIEST TEMPEHATURE OF O)(~DATION EXOTHERM 
OR THERi-1AL DEGRADATIOi~ 
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IN AIR 

• EVA AND EMA BOTH MORE STABLE THAN PVB 
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Figure 13. Thermal Aging: EVA A~9918, 130°C 
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Figure 14. Thermal Aging: EMA 13439, 130 0 C 
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Figure 15. Thermal Aging: Polyurethane Z-2591 
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Figure 1 7. Polymer Photodegradation 
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Figure 18. Polymer Photodegradation (Cont'd) 
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Figure 1 9. Photodegradation Experiments ... 
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Figure 20. RS/4 Exposure: Reference Materials (Unstabilized) 
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Figure 21. RS/4 Exposure: EVA A-991 8 
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Figure 22. RS/4 Fluorescent Sunlamp Exposure: 

• 

EVA A-991 8 (No Cover Film) 

CLEAR STABILIZED EVA EXPOSED 35,000 HOURS, 
SOLAR UV EQUIVALENT, 27 YEARS 
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Figure 23. RS/4 Exposure: EMA 1-3439 
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Figure 24. RS/4 Exposure: Polyurethane Z-2591 

2.0 

,.... 
> ..... 
a:: 
UJ 
Q. 

o 
a:: 
Q. 

N ...... 

1.0 
10 

COLOR CHANGE. %T 400 NM 

, , 
I I I III I I II II I II IIII 

I I II I rt-~ I I I I 1/ 1/ I I II I 
I II I I .1 .,....... I I I ""11 
II 

" 
I I I -, 

'" I I '" I II 1111 III II· :i- I I I II I. 
I 11111 I I /I I m~ I I 1111 

I I I 
\ , 

\ 

I 

. . . . , , 

Z346S' Z 3 4 
100 

6 a I 

1000 

TIME (HOURS) 

4 b , 
10,000 

• DATA FIRST ORDER OR INDUCTION TYPE? 
, NO CHANGE IN OPTICAL. MECHANIC~L OR ELECTRICAL 

PROPERTIES AFTER 8.000 HOURS 

• EQUIVALENT SOLAR UV. 6 YEARS 

467 

:3 4 6 a I 

100,000 



Figure 25. RS/4 Exposure: Butyl Acrylate 13870 
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Figure 26. RS/4 Exposure: PVB (Saflex PT-1 0) 
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• "INDUCTION PERIOD 500 HOURS - COMPLETE LOSS OF MECHANICAL 
PROPERTIES 

• E9U I VALEt;T SOLAR UV, 5 ~10NTHS 
• VERY DARK COLORATION AT 700 HOURS RS/4 

• REQUIRES GLP,SS/L~lINP.TION FOR STABILITY 
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Figure 27. RS/4 Exposure:. Outer-Cover Candidates 
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~ ACRYLAR ACRYLIC FILM, TENSILE STRENGTH 
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• NO CHANGE IN PROPERTIES FOR: 
TEDLAR 100BG30UT, 15,000 HRS

A
• 

TEDLAR 4462 , 11,000 HRS 
CD EH723 POLYESTER DEGRADES TO N 1% 

ELONGATION IN 4,000 HRS. 

I 

II 
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• ACRYLA~ LOSES 40% TENSILE IN 3000 HRS. 
THEN STAB I LI ZES. (STRESS RELAXA TI 011 AND 
SOME LOSS OF Mv) 

A. EQUIVALENT SOLAR UV, 11 YEARS 

470 

I I II 
! I II II 
I I III III 
I I 

.. 
~ " 5 a I 

100,000 



Figure 28. RS/4 Exposure: Back-Cover Candidates 

OSCOTCHPAR 20 CP-W (POLYESTER). ~ ELONGATION 
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o END OF INDUCTIO~ PERIOD FOR SCOTCHPAR; RETAINS 
3% ELON~ATION. 40% OF TENSILE AT 10.000 HOURS 

• END OF INDUCTION PERIOD FOR TEDLAR? 

• KOR4D 6300 WHITE ACRYLIC FIL~ 
NO CHANGE AT 8.000 HOURS 

THESE FILMS ARE NOT EXPOSED TO DIRECT SUNLIGHT. 
BACK SCATTERED LIGHT ONLY. 
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Figure 29. RS/4 Exposures 

TWO NEW CONDITIONS STARTED 

- I. RS/4; SOOC, WATER SPRAY 
II. RS/4; 85°C, HIGH HUMIDITY 

• WORST CASE ROOFTOP MODULE CONDITION 
SIMULATED BY 8SoC EXPOSURE 

• RAIN EXTRACTION SIMULATED BY WATER 
SPRAY EXPOSURE 

• WATER SPRAY ALSO INTRODUCES HYDROLYTIC 
STRESS 

• CONDITIONS WILL PROVIDE HIGHER DEGREE 
OF ACCELERATION, SHORTER TIMES TO 
CHANGE OR FAILURE 

• ASSESS FORMULATION EFFECTIVENESS IN 
SHORTER TIME 

Figure 30. RS/4 Exposures (Cont'd) 

• RS/4, SOOC WITH WATER SPRAY 

• 
• 

<10 MINUTES \~ATER EVERY 2 HOURS ) 

DATA TO DATE, 4,000 HOURS 

NO CHANGE FOUND FOR: 
EVA, EMA, PU, TEDLAR lOOBG30UT 

• ACRYLAR FILM: 

EXTRACTION OF STABILIZER 
(UV CUTOFF: 382 NM -----+ 315 NM) 

• EH 723 POLYESTER FILM: 
• APPX. 0% ELONGATION AFTER 2,000 HOURS 

(HYDROLYSIS) 

• UV CUTOFF GOES UP: 
(362 NM ~379 NM) 

( GENERATING CHROMOPHORES?) 
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Figure 31. Metal Catalyzed Oegradation 

A. 
COPPER AND OTHER MULTIVALENT METALS 

ACCELERATE OXIDATION REACTIONS IN POLYMERS 
"PRO-OXIDANTS" 

GENERAL MECHANISMS: 

I N IT I AT! ON: R - R 

PROPAGATION: R· + O2 • R02' 
R02·+ RH~ R. + ROOH 

METAL CATALYSIS: 

• MULTIVALENT'METALS COMPLEX HYDROPEROXIDES. 
REACT THROUGH REDOX r1EcHAtIISMS, ACCELERATES 
PRODUCTION OF FREE REDICALS. 

(n+l) 
ROOH + M n+ ____ ~.M + OH- + RO. 

ROOH + ~l(n+~.., n + H+ + ROO. 

• SOLUBLE IONS ARE VERY CATALYTIC. 
AFFECT PROPAGATION RlHE ONLY. 

SUM: 
+2 +3 

2 ROOH [II /[11 .P.O. + RO'. + H 0 
(FAST) 2 2 

A. NO REACTION WITH ALUMINUM OR 60/40 SOLDER 
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Figure 32. Metal Activation' (Copper Powder): 
Color Change, EVA A-991 8 

o 105°C IN AIR 
C 105°C IN NITROGEN 
~ 130°C AIR/NITROGEN 
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• EVA/COPPER SURVIVES BETTER IN NITROGEN THAN 
. AIR ATMOSPHERE (AT 10SoC) 

• AT nooc (AIR OR ~;ITROG8D .8W...PP.OPERTIES DEGRADED 
BY 1,000 HOURS. INDUCTION PERIOD APPROXIMATELY 
'400 HOURS 

• EQUIVALENT TO 2,000 HOURS WITHOUT COPPER (EST). 

• ACCELERATION FACTOR lu TO 20 
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Figure 33. Metal Activation (Copper Powder): 

2.0 

1.0 

Color Change, EMA 13439 

o 80°C AIR/NITROGEN 
o 1050C. AIRCN2 SLIGHTLY HIGHER) 
~ 130°C. AIR/NITROGEN 
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• COMPLETE DEGRADATION. ALL PROPERTIES LOST AT 
250 HOUPS -- 130°C CAIR/N2) 

• BETTER H~ ABSENCE OF AI R AT THE 105°C CONDITION 
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Figure 34. Metal Activation (Copper Powqer): 

2,0 

Polyurethane. Z-2 591 

o 30°C, AIR/NITROGEN 
C 105°C, AIR/NITROGEN 
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• COr.PLETE DEGRADATION - LOSS OF ALL PROPERTIES: 
105°C - 4000 HOURS, 130°C < 20. HOURS 

• RESULTS FOR AIR OR NIP~OGEN .l',PPR()XJr·t~.TELY 
EQU I VALEr';T 

• WITHOUT COPPER, PU DEGR~DES IN: 
> 1000 HRS - 105°C 
...w 250 HRS - l300C 
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Figure 35. Metal-Catalyzed Degradation 

METAL DEACTIVATION Ir~PORTl\NT IN HI RE AND 
CABLE INDUSTRY: COPPER CONDUCTORS 

METAL DEACTIVATORS: 

cor~PLEXING AGENTS FUNCTION TO INSOLUBLIZE 
THE METAL ION r + 2l 

HIGH 
CATALYTIC ACTIVITY 

COMPLEX 
BASE '> ++ 

~ (L2) r 
LOW 

CATALYTIC ACTIVITY 
(BUT NOT ZERO) 

o POLYMERS NOT CONTAINING METALS MeRE STABLE THfl.N 
POLYMERS WITH DEACTIVATORS 

o DEACTIVATOR EFFECTIVENESS: POLYMER COMPATABILITY 
LI GAND NUMBER, SOLUB I LI TY, PERMANENCE, SYNERG I SM 
I'IITH ANTIOXIDANTS 

• EFFECnVE: 

• 

POLYPROPLYLENE: CIBA GEIGY MD 1024 

POL YETHYLENE: t1D 10241 I RGANOX 1010; 
CYANOX 2379 

CATALYSIS FROM SOLUBLE IONS: 
REMOVE SOLDERING FLUX! 

Figure 36. Metal Deactivation Experiments 

• PREPARE POLYMER FORMULATIONS 0.2 PHR 
DEACTIVATOR 

• 
• 

• 

• 

MOLD OVER COPPER SCREE~ 

COPPER: SILANE 1 NO SILANE TREATMENT 
( Z-6030 ) 

THERr1AL AGE. AI R ArlO NITROGEN 

MON ITOR % T 400 NM (YELLOV' I tlG ) 
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Figure 37. Metal Deactivation (Copper Screen): 
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EVA A-9918, EMA 13439 
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~ COLOR CHANGE, 105°C AIR 
CONTROL (BOTH RESINS) 
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• Er~ AND EVA CONTROLS DEGRADED AT 400 HOURS 
(COLORATION AND FLOl~ OF RESIN AWAY FROM 
COPPER SCREEN> 

• LITILE TO NO CHMlGE OBSERVED FOR 
FOP,r.1ULATIONS CONTP.IfIING 0.2 PHR MD-I024, 
CYANOX 2379 OR SILANE TREATED COPPER (Z6030) 

• SLIGHT DISCOLORATIONS VISIBLE or~ ALL COPPER 
SPECIMENS WITHOUT SILANE TREATMENT 

• EXTENDED INDUCTION PERIOD? 
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Figure 38. Metal De,activation (Copper Screen): 
PVB Saflex PT -1 0 

o COLOR CHANGE, 105°(, PLAIN COPPER 

~ COLOR CHANGE, 105°(, COPPER W/SILANE 

2.0 A
C 

....... 
>­
l­
e: 
LU 
Q.. 

o 
1.0 g: 

N ..... 

o 

...... - ._-, -, '-0-' , .. 
, -,- , , - ., , , 
I'--I"--I--'-~I ,., .. , 
,-,-, ,- .""- ,'" ,- , , , 

-I 1 1 1 1 1 1 II ~;.;\ i 1 1 I I 
I I I I I I I Ii ! -\. ~ , i I I I 

I I I II I \J ttl I I 

I I /I III I l'A't. I ! ... '.- -- .. I"" I , , , , , , .:. , .- , , - , , , .. , 
1 I . 1 I I I I '" 

1 , , I , " 
-, I ,- I I , I 

I I I I II I -, 11111 

I I 111111 I I I 1111 
10C 

TIME (HOURS) 

• STRONG YELLOW COLOR VISIBLE IN ALL SPECIMENS 
AT 350 HOURS <THERr1AL MID METAL REACTION) 

1000 

• RESULTS FOR AIR AND NITROGHI APPROXI1-1,ATELY EQUAL 

• RESULTS WITH SILANE Z6030 SLIGHTLY WORSE THAN 
CONTROL 
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Figure 39. Metal Deactivation (Copper Screen): 
. Polyethylene, TBEC-Crosslinked 

o COLOR CHANGE. 105°C. PLAIN COPPER 
~ COLOR CHANGE. 105°C. SILANE/COPPER 
C! COLOR CHANGE, 1Os0e w/ MD 1024 
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• SILANE GIVES IMPROVEMENT OVER CONTROL 

• MD 1024 FOPJ1ULATION - NO CHANGE 

Figure 40. Conclusions (Results to Date) 

THERMAL AGING 

• ACETIC ACID GENERATION (EVA) NO PROBLEM 

• EVA AT 90°C OUT TO 7,200 HOURS - NO CHANGE 

• EMA AT 130°C OUT TO 400 HOURS - NO CHANGE 

• PU AT 105°C OUT TO 1,000 HOURS - NO CHANGE 

EVA 
PU 

LIFE LIMITS 
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Figure 41. Conclusions (Results to Date, Cont'd) 

GENERAL OBSERVATIONS 

• SEVERITY OF CONDITION: r1ETAL EXPOSURE. 
THERr1AL (13000. THEN RS/4 

• PROPERTIES LEAST AFFECTED: DIELECTRIC, 
OPTICAL AND MECHANICAL 

o FIRST PROPERTY TO CHANGE: COLOR (YELLO~') 

o DEGRADATION: PREDOMINANTLY INDUCTIO~! 
PERIOD TYPE. FEI-! FIRST ORDER 

• EXPOSURE TIMES ARE LONG.' NEED HIGHER 
ACCELERATION TO ASSESS FORMULATION 
CHANGES IN LESS TIME. 

Figure 42. Conclusions (Results to Date, Cont'd) 

RS/4 EXPOSURE 

• UNSTABILIZED POLYMERS DEGRADE RAPIDLY 

II EVA OUT TO 35,008 HOURS - NO CHANGE : 

• E~A OUT TO 10,000 HOURS - NO CHANGE 

• PU OUT TO 3,000 HOURS - NO CHANGE 

• TEDLAR 100B630 - 25,000 HOURS - NO CHANGE 

LIFE LIMITS 

BUTYL ACRYLATE 

POLYESTER, EH 723 
SCOTCHPAR 20 CPW 

PVB 
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Figure 43. Conclusions (Results to Date, Cont'd) 

METAL ACTIVATION 

• AVOID METALLIC COPPER IN CO:JTACT-

~~ITH POTTANT: (OTHER MULTIVALENT 

r~ETALS? ) 

• NO REACTIONS OBSERVED liITH ALUMINUM, 

60/40 SOLDER 

• HASH OFF SOLDER FLUX ( ACIDIC 

RESIDUES , SOLUBLE IONS) 

• DEACTIVATORS GIVE I~lPROVEMENT 

(EFFECTIVENESS? ) 

• SILA~E GIVES IMPROVEMENT 

(EFFECTIVENESS?) 

LIFE LIMITS 

ALL POTTANTS lOSoc 
APPROXIMATELY 400 HRS. 

Figure 44. Life-Limiting Factors (7) 

• VOLATILE LOSS OF STABILIZERS 

• 

• 
• 

EXTRACTIVE LOSS OF STABILIZERS 
( RAIN~IATER ) 

ADHESIVE BOND FAILURE 

LONG PERIODS OF " HOT SPOT" HEATING 
UNDER VERY BACK BIASED CONDITIONS 
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• 
• 

• 

• 

Figure 45. Future Work 

CONTINUE CURRENT AGING STUDIES 

ACCUMULflTE DATA FROH NElJ CONDITIONS: 

• RS/4 AT esOc 

• CONTROLLED E~VIRONMENT REACTORS 
( CER) 

o OUTDOOR PHOTOTHERMAL REACTORS 
(OPT) (COMBINE NATURAL SUNLIGHT 
EXPOSURE WITH INCREASED TEMPER­
ATURES) 

• OUTDOOR EXPOSURE (PHOENIX. FLORIDA) 

CHEMICAL INVENTORY OF STABILIZERS 
REMAINING IN AGED SEPEIMENS 

EVALUATE ADHESIVE BOND DURABILITY/ 
LIFETIME 
(RS/4. THERMAL. OUTDOOR) 
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DISaJSSION 

GARCIA: Has work been done on the interaction of silver with the pottants? 
That is one question. The second question is: is polyurethane used in 
this case-~as this the latest formulation of so-called non-yellowing 
polyurethane or the earlier one? I will ask that of Bud (Nannig) too. 

NANNIG: It is the latest. 

CUDDIHY: Thank you, Bud. I can take care of the first question. We have no 
experience with silver. Again, as you know, the Springborn activity is 
supposed to be the low-cost material with so-called advanced metallization 
systems, which really means copper, nickel, solder, taoorrow's lower­
costing systems. Industries are taking care of today's systems. So you 
probably know a lot more about silver interactions than I would. Bud 
(Nannig), you did supply Paul ONillis) with the polyurethane which has the 
non-yellowing additive? 

NANNIG: Right. I would like to make a cooment about that. We have done a 
lot of work with various additives--with ali~atic polyurethanes to 
stabilize them against IN and oxidation. We re not sure exactly what 
happens, but one of the things we have run into, at one time, and it may 
be a warning, is that we found that the IN absorber itself yellowed on 
thermal aging. It was a IN screener, I won't mention the product, but it 
was an excellent IN screener and gave us excellent surface characteristics 
and so forth, but we found that the screener itself yellowed, especially 
at high temperatures. So it wasn't the polymer itself but the additive. 

COULBERT: Along that line: Ranty (Liang) showed that you can suffer losses in 
this yellow region or in the blue absorption region, something like 80% 
absorption in the 500~anometer band, with a net effect on solar-cell 
performance of 5% or 10%. So it is a very exaggerated effect. When we 
see the yellowing visually, there may be little performance loss. 

KEIOLA: Do you have any specUlations as to why you have the massive 
failures all of a sudden at 10,000 hours, and can you possibly rule out a 
process upset in your aging machines? We have seen the same type of 
results and have been able to trace those massive failures to 
interruptions in the aging device itself. 

CUDDIHY: You have caught we me very cold on that. I don't know the answer. 
I saw that data trace for the first time as I was presenting it to you so 
I haven't had a chance to ask Paul ONillis) on that althougP the 
contractors are obligated to write us a monthly report on both good things 
and bad things and there has been nothing in Paul's reports to indicate 
any kind of system failure. It could be just in the nature of the 
plotting format that merely reflects an exaggeration of the induction 
period and just a sharp deterioration. It looks like that on a log-log 
format. That's my guess right now. 

LEWIS: About this IN susceptibility of the back covers. Is there any 
intention to look at how IN gets back-scattered in a sandy area or where 
there's snow on the ground? You know we are trying to put these arrays in 
a lot of different places, and that worries me. 
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CUDDIHY: I appreciate your view. We don't do this, do we? 

COULBERT: Not quantitatively. Same of the reflectance data, as on the 
mirrors at DSET, the UV reflectances falloff very rapidly, which suggests 
reflection from any other surface would essentially absorb UV very quickly 
and the back-scattering UV would be orders of magnitude less than the 
direct uv. 

CUDDIHY: Gould Ami's (Gupta) actinometer that he has on the front of modules 
just be placed on the back side? 

COULBERT: Yes. It could be measured if sanebody is interested in it. 

PLUEDDF.MANN: I haven't talked with Paul (Willis) about this but he mentioned 
that with the silanes he didn't seem to get a copper effect and suggests 
then that if he has adhesion to the copper, the copper doesn't corrode, 
and therefore you don't get copper ions. I have often wondered which 
comes first, corrosion or loss of adhesion, and I have always proposed 
that as long as you have good adhesion you can't have corrosion. It seems 
to bear that out a little bit, here at least. But you don't have copper 
ions if you have good adhesion. 

CUDDIHY: Let's take a minute on that. If anything is controversial today it 
has to do with how to stop corrosion and tarnish of corrodible metals with 
silane coupling agents. I personally believe that if you have the right 
chemical coupling agent you chemically react with the surface. You do two 
things. You destroy the chemical entities at the surface, by preferential 
reactions that are water-attractive. You shift the physical water 
absorption characteristics at the surface from hydrophilic to a 
hydrophobic base. That means then that abnOspheric water vapor, sitting 
outside looking through the polymeric fibn as though it were a membrane, 
the membrane may have a permeation constant but it does not have the 
action of permeation because you have arrested the driving force both 
chemically and physically. If it takes liquid water condensed on the 
surface of a corrodible metal to corrode and you have arrested the driving 
force, you have arrested the action for that moisture to permeate, get 
there and condense. Ed (Plueddemann) is one of our contractors and we 
have asked him to develop, of course not only this family of primer 
systems for bondi~ things like EVA to glass which indirectly, I should 
tell you if I didn t, gives; us bond strengths greater by 45 pounds now per 
inch of width. You break glass with these things; they are enormously 
powerful. canbining sane of the rules too with Dr. Koenig of the 
prehydrolysis to get rid of this superstructure, you get down to the 
really tight areas. But back to the metals. Ed developed for us a primer 
system for bonding EVA to copper, bonding EVA to stainless steel, mild 
steels and other things like that. With this primer system, it chemically 
bonds to the aluminum copper surface. I am convinced of it. It also 
bonds to the EVA. We took such a material, copper, EVA with that primer 
system, at JPL--we have not published this yet--and we put it in test 
chambers at 100% relative humidity established at temperatures like 500, 
600, 700C and they have been in there for hours and weeks and months, 
and I took one out on my last trip to Ed and showed it to him. Zero 
tarnish, nothing. Absolutely dead zero. No water got to the interface, 
therefore you could not induce it. But if you took the EVA and you 
laminated it around the copper without these silane coupling agent 
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systems--you can't just go buy this stuff off the shelf. it's a mixture of 
things--it will tarnish overnight at SQOC or IOCi4 RH; it just comes 
rolling through. At Springborn Laboratories loie took the primer system 
that Ed developed for mild steel and we encapsulated or lamdnated EVA 
around that primer system. It's been in the ASTM Bl17 salt-fog chamber at 
Springborn 4000 hours. There isn't a mark on the mild steel. The EVA is 
transparent and we can look right through it. It works. I am convinced 
it works. I may not clalin to understand all of the chemistry. but I see 
it works. 

WHITE: Am I to understand. then. that the water in the EVA does nothing to 
degrade the EVA itself and that photooxidation is the major component of 
the degradation. and therefore. if it is. then once the photooxidation 
occurs. does the water help increase the rate of degradation in the EVA or 
does it not do anything at all? 

CUDDIHY: You are asking a different question now. I think. You are asking is 
EVA susceptible to photohydrolysis or is it susceptibl~ to hydrolysis 
itself at elevated temperature? 

WHITE: What I am trying to say is. does the water. if at the surface of the 
metal in the EVA. if there is nothing for the water to condense at. the 
water can still get into the EVA. Does it do anything? Does it not get 
into the EVA at all? 

CUDDIHY: Let's call water what it is at that point. It is vapor. It is non­
condensed. It is not liquid. It is just like the paper in front of you 
right now. It has picked up water vapor in equilibrhm with the current 
relative humidity in this roan. As the relative htmidity goes up and goes 
down the water vapor absorbs and desorbs. The question now is. does water 
vapor have energetic effects in deterioration? I don't know the answer to 
that. One of the things that is starting up--the wetRS/4 was just 
beginning to answer questions like that. We don't know. lbwever. the 
evidence would be. from what I have seen in actual arrays outdoors in 
installations where commercial modules in EVA have been--in Guam. for 
example. for over a year in same other locations: don't see a thing. 
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