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ABSTRACT

This report describes laboratory tests performed to characterize
candidate encapsulation materials with respect to changes in their physical
and chemical properties caused by photothermal aging. Several key material
properties relating directly to material degradation and deterioration of
performance have been identified and have been monitored as functions of aging
conditions and time. This handbook provides a status report on accelerated
testing activities and presents experimental data collected before and during
December 1982. It will be updated periodically as more data become available.

The use of these data in development and dissemination of predictive
models describing the rate of aging as a function of stress parameters is a
separate and ongoing task. A preliminary version of this model will be
published soon in a separate Flat Plate Solar Array Project report.
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SECTION I

INTRODUCTION

A. BACKGRQUND

The Environmental Isolation Task within the Flat-Plate Solar Array
Project (FSA) has the responsibility of (1) developing new materials and
processes required to achieve low-cost, durable encapsulation of photovoltaic
(PV) modules at a total installed cost of $14/m2 for the encapsulation
package and (2) performing assessment and prediction of deployed PV module
lifetime, through development of a fundamental understanding of degradation
processes and mechanisms of the encapsulation materials, and development of
outdoor lifetime prediction models for encapsulated modules.

Toward this overall objective of life assessment and prediction, an
effort was initiated directed to the characterization of chemical and physical
responses of encapsulant materials to accelerated photothermal aging. This
effort involves exposure of materials to ultraviolet and visible radiation,
elevated temperatures, liquid water spray and various oxygen concentratioms.
The primary use of these data is in validating and refining analytical models
describing chemical changes in materials occurring on long-term exposure.
These data may also be used in ranking candidate materials that perform the
same functions within the encapsulation package and that belong to the same
generic chemical class of compounds with respect to their photothermal aging
responses.

These tests are complemented by mechanistic studies performed on
selected materials such as ethylene vinyl acetate (EVA), polymethyl
methacrylate (PMMA), and poly-n-butyl acrylate (PnBA). The studies involve
characterization and monitoring of chemical degradation caused by photothermal
aging, i.e., photooxidation, crosslinking and chain scission in polymers.
Transient species involved in the overall degradation process, e.g., chain
radicals and electronically excited states, are monitored in real time using
flash kinetic spectroscopy and transient electron-spin resonance (ESR)
spectroscopy. A status report of this work can be found in References 1
through 8.

B, MATERIAL PROPERTIES MONITORED
The following properties have been monitored as a function of aging time:

(1) Optical Transmittance: Optical transmittance was measured on a
Cary 219 spectrophotometer equipped with a 4-in. integrating
sphere and ultraviolet (UV) optics. The collimated and total
transmittance were obtained as a function of wavelength in the .
wavelength range 300-1200 nm. Besides providing a direct measure
of chemical changes involving formation of oxidized species such
as carbonyl groups in the polymer optical transmittance,
measurements may also be used to monitor diminution of cell
performance due to loss of transmittance of the encapsulant



material. Optical transmittance measurements also provide a
monitor of the UV screening capability of outer-cover films.

(2) Weight Loss: Weight-loss measurements allow monitoring of loss of
polymer mass due to evaporation of plasticizers, leaching of
additives and formation of volatile degradation products.
Weight-loss measurements correlate with the rate of formation of
voids in the encapsulation package, which may cause delamination
and corrosion,

(3) Tensile Modulus: Uniaxial stress-strain response was monitored as
a function of photothermal aging time, Measurements were made as
a function of strain rate, up to yield. This stress-strain
response can be used to calculate engineering or secant modulus of
the material. Work by Spectrolab, Inc., indicates that the strain
isolation function of the encapsulation package requires a
tradeoff between the thickness of the pottant material and its
maximum allowable Young's modulus (Reference 9). The measured
stress—-strain response also yields information on the stress-
relaxation or creep behavior of these materials. Detailed creep
measurements on EVA will be reported in a Jet Propulsion Laboratory
(JPL) publication.

(4) Swelling and Sol/Gel Ratio: Crosslinked polymers are inmsoluble in
any solvent, but they are subject to swelling. The extent of
swelling is determined by the crosslink density of the materials
and the match between its solubility parameters and those of the
solvent. Partially crosslinked materials can be extracted to yield
a sol fraction which has finite molecular weight and a remaining
gel which has a crosslinked network. Determination of swelling
behavior and sol/gel fraction yield fundamental information on the
network crosslink density and network topology, which are critical
chemical structural parameters in a polymer that control its
physical-mechanical response. The mechanical response of a polymer
changes on outdoor aging because aging causes changes in crosslink
density and network topology. Hence, the ratio of changes in
swelling behavior or sol/gel fraction after aging is a key measure
of the outdoor stability of these polymers.,

s

C. TEST DESIGN

Polymer samples were aged at 55°C, 70°C, 85°C, 105°C, and 135°C. Aging
conditions for the four lower-temperature tests have been reported previously
(Reference 10) and are described only briefly here. The source of UV radiation
used in the four lower-temperature tests (55°C, 70°C, 85°C, and 105°C) was 2
filtered medium-pressure Hg arc lamp, approximately 200 W/in. of arc lenmgth in
power. The lamp was placed inside a water-cooled Pyrex jacket. A transparent
annular Pyrex oil bath was then fitted around the jacket. The samples were
mounted in the space between the Pyrex jacket and the oil bath, and were in
contact with the hot oil-bath jacket. The radiation apparatus is shown in
Figure 1. Samples (3 x 1/2 in.) were mounted directly on the inner surface of
the oil-bath jacket to allow free access of oxygen (open thermal aging).
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Samples for limited-oxygen-access testing were placed between two sheets of
Pyrex glass and the sandwich then was mounted on the bath., This arrangement
(covered photothermal aging) allowed limited access of oxygen with its edge
effects, as illustrated in Figure 1. Control experiments (with no UV) were
also performed by aging samples in a dark stagnant oven.

Although satisfactory data were obtained by use of this radiation
equipment, it lacked precise temperature control, especially at elevated
temperatures; e.g., a 109C rise in sample temperature was once observed
during one of the 1059C tests. This was caused by enhanced absorbance of
radiation by sample films turning yellow as a result of photothermal aging.
While the oil bath maintained at 105°C was supplying most of the heating
during the initial aging stage, the additional absorbance of photons resulted
in the rise in sample temperature. Subsequently, an accelerated aging
chamber, the Controlled Environmental Test Chamber (CER), was designed and
constructed at JPL to achieve better temperature control.

A detailed description of the CER is to be found in Reference 11,
Briefly, the irradiation source in the CER is a medium-pressure Hg lamp
filtered to yield a photon flux of up to 6 suns of AM] ultraviolet radiation
in the 295-375 nm wavelength region, In addition, it can provide precise
temperature control and simulated rain and fog. Detailed calibration of the
photon flux was achieved by radiometry and actinometry. Parallel aging tests
were performed inside the CER and at the JPL outdoor site in order to validate
its use as an accelerated testing device and to estimate the accelerating
factors achieved under specific conditions. The CER has also been demonstrated
to be a valid accelerated outdoor simulator with respect to photooxidation
(Reference 12). Figure 2 is a photograph of the CER.

The initial CER design allowed aging temperatures ranging from 25°C to
60°C. Subsequently, resistor-type heaters were added to the outside wall of
the CER to enhance its high-temperature capability. Additionally, a
thermostatted sample holder equipped with its own heat source was designed to
reach a sample aging temperature of up to 135°C., All heaters were
thermostatically controlled by the voltage output of a thermocouple that is
attached directly to the sample films. Continous temperature control within
#30C were obtained routinely by the CER, even at 135°C.

D. TEST SAMPLES

Samples tested were ethylene vinyl acetate copolymer (EVA, Springborn
Laboratories, Inc., A-9918); polyvinyl butyral (PVB, Monsanto Co. Saflex);
silicone rubber (room-temperature vulcanizing silicon elastomer, General
Electric Co. RIV-615) ethylene methyl acrylate copolymer (EMA, Springborn
A-13404); and poly-n-butyl acrylate (PnBA, Springborn A-13870). Two kinds of
aliphatic polyurethanes manufactured by H.J. Quinn Co. and Development
Associates (PU Z-2591) also were tested., Four commercially available
outer-cover film materials are being evaluated. These are Korad (Xcel Corp.),
Tedlar (Du Pont Co.), Acrylar (3M Co. X-22416), and Kynar (Pennwalt Corp.).
The Tedlar sample tested was designated as UTB-100 and a new sample of Tedlar
(100BG30UT) is now being evaluated. Table 1 is a matrix of samples tested and
Table 2 is a matrix of the pottant samples versus aging conditions and aging
time. Table 3 is a similar matrix for outer-cover materials.



Figure 2. Controlled Environmental Reactor (CER)



Table 1,

Matrix of Pottant and Outer Cover Materials Tested

MATERIAL
APPLICATION | ACRYLICS POLYOLEFINS | FLUORO- OTHER
CARBON (SILICONES,
POLYURETHANES)
POTTANT EMA EVA RTV
(SPRINGBORN | (SPRINGBORN (GE RTV-615)
A-13404) A-9918)
PU QUINN)
PnBA PVB
(SPRINGBORN | (MONSANTO PU (DEVELOPMENT
A-13870) SAFLEX) ASSOCIATES Z-2591)
OUTER ACRYLAR TEDLAR
COVER (BM X-22416) (DU PONT
UTB-100)
KORAD KYNAR
(XCEL) (PENNWALT)
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Table 3.

Matrix of Quter

Cover Samples versus Temperature and Time

AGING TIME, days

TEMPERATURE,
oc ACRYLAR TEDLAR KORAD KYNAR
X-22416 UTB-100
55 600 365 0 200*
85 200 0 15 200
150 2

* AT 60°C




SECTION II

EVA (SPRINGBORN A-9918)

The following figures and tables offer data on optical transmittance
(Figures 3 through 13); mechanical properties (Figures 14 through 25, Tables 4
through 6); weight loss (Figures 26 through 28); other properties (Tables 7
through 9) of EVA (Springborn A-9918).
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Figure 3. Change in Optical Transmittance as a Function of
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B. MECHANICAL PROPERTIES
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Figure l4. Change in Stress/Strain Response as a Function of
Open Photothermal Aging of EVA at 70°C
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Figure 20. Change in Stress/Strain Response as a Function of
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Table 4. Modulus at 5% Strain as a Function of Open Phototbemal
Aging of EVA at 30°C, 70°c, 859C, 105°C, and 135°C

TEMPERATURE TIME OF MODULUS, Ib/in.2

°C AGING, h 5% STRAIN

- :

ROOM TEMP. (30) 0.0 1015 |
400 586

70 500 650

200 582

85 ' 800 628

200 83

105 800 566

!
135 84 734
168 *

*SAMPLE DEGRADED, UNABLE TO OBTAIN MODULUS DATAl
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Table 5. Modulus at 5% Strain as a Function of Covered Pho
Aging of EVA at 30°C, 70°C, 859C, 1059C, and 1359

tothermal
C

TEMPERATURE, TIME OF MODULUS, Ib/iin.?
oC AGING, h 5% STRAIN
ROOM TEMP. (30) 0 1015
200 671
70 =00 630
200 846
85 800 504
200 550
105 800 664
168 600
336 580
135 672 625
1008 869
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Table 6. Modulus at 5% Strain as a Function of Thermal Agin?
of EVA at 30°9C, 70°C, 85°C, 105°C, and 135°C |

L
TEMPERATURE, TIME OF MODULUS, |b/‘rn,2
oC AGING, h 5% STRAIN | -
ROOM TEMP. (30) 0 1015
200 855
70 400 55
500 640
|
200 577
85 800 700
|
i
J
|
|
200 786
105 800 610 |
\
|
|
J
|
168 560 |
25 336 582
‘ 672 | 742
1008 870
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OTHER PROPERTIES

Table 7.

Sol/Gel and Molecular Weight Data as a Function gf Open
Photothermal Aging of EVA at 30°C, 70°C, 85°C, 105°C,
and 135°C '

o TIME OF CROSSLINKING MOLWT
T°C| AGING, h | DENSITY, MOL/emd | SOL, % | GEL, % (SOL)
30 0 5.62 x 107 30 70 206,000
85 800 4.32 x 10™6 33 &7 118,000
200 3.11 x 1076 33 67
105
800 5.86 x 10°° 33 &7 91,000
84 7.0 x 1076
s 168 5.6 x 107
: 336 11.3 x 1076 55 45
1008 20.4 x 1076 22 78
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Table 8. Sol/Gel and Molecular Weight Data as a Function of£Covered
Photothermal Aging of EVA at 30°C, 70°C, 85°C, 1059C,
and 135°C 1
TIME OF CROSSLINKING o MOL WT
(o] ! [
T°C| AGING, h | DENSITY, MOL/em® | SO % | GEL, % (SOL)
30 0 5.62 x 107 30 70 206,000
85 800 7.8 x 1070 29 71 75,000
105 800 10.10 x 1076 34 66 44,000
168 7.1 x 107 39 61
336 33.8 x 107 29 71
135 672 72.8 x 107 2% 74
1008 39.8 x 107® 18 82
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Table 9. Sol/Gel and Molecular Weight Data as a Function of Thermal

Aging of EVA at 309C, 70°C, 85°C, 105°C, and 135°C

CROSSLINKING

o TIME OF o o MOL WT
T°C1 AGING, h DENSITY, MOL/em? | SOL- % | GEL, % (SOL)
30 0 5.62 x 107° 30 70 206,000
85 800 2.29 x 107° 35 65 168,000
105 800 1.33 x 1076 37 63 174,000
168 6.76 x 10°6 26 74
336 5.34 x 1078 30 70
135 672 5.59 x 1070 30 70
1008 6.09 x 107 33 67

41 - 42




SECTION III | 1

PVB (MONSANTO SAFLEX) L

The following figures and tables offer data on optical tran#nﬁittauce
(Figures 29 through 33); mechanical properties (Figures 34 through 39, Tables
10 through 12); weight loss (Figures 40 through 42) of PVB (Mansanto Saflex).
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Figure 29. Change in Optical Transmittance as a Functionj of Open
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B. MECHANICAL PROPERTIES
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Figure 34. Change in Stress/Strain Response as a Function of
Open Photothermal Aging of PVB at 70°C
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Table 10. Modulus at 5% Strain as a Function of Open Photothermal
Aging of PVB at 30°C, 70°C, and 135°C
TEMPERATURE, TIME OF MODULUS, no/in.2
°cC AGING, h 5% STRAIN
ROOM TEMP. (30) 0 348
70 400 244
135 84 52,800
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Table 11. Modulus at 5% Strain as a Function of Covered Photothermal
Aging of PVB at 30°C, 70°C, and 135°C

TEMPERATURE, TIME OF MODULUS, Ib/in.2
°C AGING, h 5% STRAIN
ROOM TEMP. (30) 0 348
200 100
70 400 47
168 638
336 2610
135 672 39, 200*
1008 90,000*
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Table 12. Modulus at 5% Strain as a Function of Thermal
: Aging of PVB at 30°C, 70°C, and 135°C
TEMPERATURE, TIME OF MODULUS, b/ in.?

°C AGING, h 5% STRAIN
ROOM TEMP. (30) 0 348
200 219
70 400 238
168 3110
35 336 32,277
] 672 70, 500
1008 71,600
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WEIGHT LOSS, %
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Figure 40. Weight Loss as a Function of Open Photothermal

Aging of PVB at 550C, 709C, and 1359C
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Figure 41. Weight Loss as a Function of Covered Photothermal
Aging of PVB at 55°C, 70°C, and 135°C
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SECTION IV
RTV SILICONE ELASTOMER (GE RTV-615)
The following figures and tables offer data on optical transmittance
(Figures 43 through 51); mechanical properties (Figures 52 through 60, Tables

13 through 15); weight loss (Figures 61 through 63); other properties (Tables
16 through 18) of RTV silicone elastomer (GE RIV-615),
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A, OPTICAL TRANSMITTANCE
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Figure 43. Change in Optical Transmittance as a Function of
Open Photothermal Aging of RTV at 70°C
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Figure 44. Change in Optical Transmittance as a Function of
Covered Photothermal Aging of RTIV at 70°C
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Figure 45. Change in Optical Transmittance as a Function of
Thermal Aging of RTV at 70°C
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Figure 46. Change in Optical Transmittance as a Function of

Open Photothermal Aging of RTV at 85°C
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B. MECHANICAL PROPERTIES
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Figure 53. Change in Stress/Strain Response as a Function of
Covered Photothermal Aging of RIV at 70°C
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Figure 54. Change in Stress/Strain Response as a Function of

Thermal Aging of RTV at 70°C
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Figure 55. Change in Stress/Strain Response as a Function of
Open Photothermal Aging of RTV at 85°C
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Figure 56. Change in Stress/Strain Response as a Function of
Covered Photothermal Aging of RIV at 85°C
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Figure 57. Change in Stress/Strain Response as a Function of
Thermal Aging of RTV at 85°C

76



600 I l | | I

CONTROL

— @ m— & — ]00 h

400 I~ ——— 800 h ]

(<A TO BREAK)

STRESS, 1b/in.2

200

0 10 20 30 40 50 60
STRAIN, %

Figure 58. Change in Stress/Strain Response as a Function of
Open Photothermal Aging of RTIV at 105°C
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Figure 59. Change in Stress/Strain Response as a Function of
Covered Photothermal Aging of RIV at 105°C
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Figure 60. Change in Stress/Strain Response as a Function of
Thermal Aging of RTV at 105°C
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Table 13, Modulus at 5% Strain as a Function of Open Photothermal
Aging of RTV at 30°C, 70°C, 85°C, and 105°C
TEMPERATURE, TIME OF MODULUS, In lb/in.2
°C AGING, h 5% STRAIN
ROOM TEMP. (30 0 SAMPLE 1 SAMPLE 2
-+ (30) 110 322
200 186
70 400 141
500 167
200 335
85 800 314
100 238
105 200 300
800 285
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Table 14, Modulus at 5% Strain as a Function of Covered Photothermal

Aging of RTV at 30°C, 70°C, 85°C, and 105°C

TEMPERATURE, °C AT(;A(\,EGO’ Fh MODULUS, Ib/in.2 5% STRAIN
SAMPLE 1 SAMPLE 2
ROOM TEMP. (30) 0
110 322
200 234
70 400 217
500 234
200 308
85 800 301
200 341
105 800 312
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Table 15. Modulus at 5% Strain as a Function of Thermal Aging
of RTV at 300°C, 70°C, 859C, and 105°C

TEMPERATURE, °C AGING MODULUS, Ib/in. 2 5% STRAIN
SAMPLE 1 SAMPLE 2
ROOM TEMP., (30) 0
110 322
200 158
70 400 158
500 179
200 275
85 800 270
200 266
105 800 263
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Figure 61, Weight Loss as a Function of Open Photothermal

Aging of RTV at 70°C and 85°C
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Figure 62. Weight Loss as a Function of Covered Photothermal
Aging of RIV at 70°C, 85°C, and 105°C
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D. OTHER PROPERTIES

Table 16, So0l/Gel and Molecular Weight Data as a Function of
Open Photothermal Aging of RTV at 30°C, 70°C, 85°cC,

and 105°C

° TIME OF CROSSLINKING MOL WT

T, C| AGING, h | DENSITY, MOL/cm® | SOL, % | GEL, % (SOL)

0 5 SAMPLE 1 | SAMPLE2| 11 2 | 11 2| 1 2
2.04x 10-417.97 x 10~4 4 96 2000

70 500 2.70 x 1074 4 96 2000

85 800 7.62 x 104 4 9 2000

_4
105 800 7.42 x 10 4 96 2000
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Table 17. Sol/Gel and Molecular Weight Data as a Function of
Covered Photothermal Aging of RTV at 30°C, 70°C,
850C, and 105°C
o~-| TIME OF CROSSLINKING . MOL WT
T,°C| AGING, h | DENSITY, MOL/em® | SOL % | GEL, % (SOL)
o . SAMPLE 1| SAMPLE 2| 1 1 2 | 1 | 2 1 2
| 004 x 10-%7.97 x 1074 4 9% 2000
70 500 4.69 x 1074 3 97 2000
85 800 7.69 x 1074 4 96 2000
105 800 8.79 x 1074 4 9% 2000
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Table 18, Sol/Gel and Molecular Weight Data as a Function of
Thermal Aging of RTV at 30°C, 700C. 85°C, and 105°C
o TIME OF CROSSLINKING N MOL WT
T, "C| AGING, h | DENSITY, MOL/em® | SOL % | GEL, % (SOL)
{sAmPLE 1 [sampe2 | 1 [ 2 [ 1. [ 2 1 2
30 0 = )
2.04 x 1074]7.97 x 10 96 2000
70 500 2.75 x 1074 3.5 9.5 2000
85 800 5.83 x 1074 4 96 2000
105 800 6.08 x 1074 3.5 96.5 2000
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SECTION V

EMA (SPRINGBORN A-13404)

The following figures and tables offer data on mechanical properties
(Figures 64 and 65, Tables 19 and 20); weight loss (Figures 66 through 68);
other properties (Tables 21 through 23) of EMA (Springborn A-13404).
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A. MECHANICAL PROPERTIES
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Figure 64. Change in Stress/Strain Response as a Function of
Covered Photothermal Aging of EMA at 135°C

90



STRESS, Ib/in.>2

600 I T T T 7
400 —
200 o /' —
/
—se—— 148 h
----- 336 h
—i—e— 672 h
— -~ 1008 h
0 | 1 [ | |
0 10 20 30 40 50 60

STRAIN, %

Figure 65. Change in Stress/Strain Response as a Function of
Thermal Aging of EMA at 135°C
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Table 19. Modulus at 5% Strain as a Function of Covered
Photothermal Aging of EMA at 309C and 135°C

TEMPERATURE, °C Ag’}A,E(g " MODULUS, LB/in.? 5% STRAIN
ROOM TEMP. (30) o 3548
168 3016
135 336 - 2871
672 2552
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Table 20. Modulus at 5% Strain as a Function of Thermal
Aging of EMA at 30°C and 135°C
TIME OF
TEMPERATURE, °C AGING, h MODULUS, Ib/in.2 5% STRAIN
ROOM TEMP. (30) 0 3548
168 3398
135 * 336 3530
672 2736
1008 4231

* IN A COVERED CONFIGURATION (SANDWICH)
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Figure 66. Weight Loss as a Function of Open Photothermal
Aging of EMA at 135°C
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Figure 68. Weight Loss as a Function of Thermal Aging of EMA
at 1359C in a Covered (Sandwich) Configuration
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C. OTHER PROPERTIES

Table 21. Sol/Gel and Molecular Weight Data as a Function of
Open Photothermal Aging of EMA at 30°C and 135°C

o TIME OF CROSSLINKING . .
T,°Cl AGING, h | DENSITY, MOL/em® | O % | CEL %
30 0 2.0 x 1074 15 85

2
84 3.5 x 10 10 90
135 168 3.42 x 1074 " 89
336 3.55 x 1074 12 88
672 2.77 x 1074 18 82
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Table 22. Sol/Gel and Molecular Weight Data as a Function of
Covered Photothermal Aging of EMA at 30°C and 135°C

o.| TIMEOF CROSSLINKING . .
T,°Cl AGING, h | DENSITY, MOL/em® | SOL/ % | GEL, %
30 0 2.0 x 1074 15 85

168 1.0 x 1074 22 78

336 0.8 x 1074 2 74
135 D

672 1.0 x 10 32 68

1008 2.3 x 1074 20 80
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Table 23. Sol/Gel and Molecular Weight Data as a Function of
Thermal Aging of EMA at 30°C and 135°C
o TIME OF CROSSLINKING
T,°Cl AGING, h | DENSITY, MOL/em® | SOL % | GEL %
30 0 2.0 x 1074 15 85
168 3.61 x 1074 10 9
ase| 3% 3.53 x 1074 10 90
672 3.74 x 1074 10 90
1008 3.63 x 1074 1 89

*IN A CLOSED (SANDWICH) CONFIGURATION
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SECTION VI

PnBA (SPRINGBORN A-13870)

The following figures and tables offer data on mechanical properties
(Figures 69 through 71, Tables 24 through 26); weight loss (Figures 72 and
73); other properties (Tables 27 through 29) of PnBA (Springborn A-13870).
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A. MECHANICAL PROPERTIES
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Figure 69. Change in Stress/Strain Response as a Function of
Open Photothermal Aging of PnBA at 135°C
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Figure 70. Change in Stress/Strain Response as a Function of
Covered Photothermal Aging of PnBA at 135°C
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Change in Stress/Strain Response as a Function of
Thermal Aging of PnBA at 135°C
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Table 24.

Modulus at 5% Strain as a Function of Open
Photothermal Aging of PnBA at 30°C and 135°C

TEMPERATURE, °C AGING b MODULUS, Ib/in.? 5% STRAIN
ROOM TEMP. (30) 0 175
84 281
135 168 1250
336 2175

105




Table 25. Modulus at 5% Strain as a Function of Covered
Photothermal Aging of PnBA at 30°C and 135°C

IME
TEMPERATURE, °C AOING MODULUS, Ib/in.? 5% STRAIN
ROOM TEMP. (30) 0 175
168 155
135 336 4915
672 450
1008 350
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Table 26. Modulus at 5% Strain as a Function of Thermal
Aging of PnBA at 30°C and 135°C
o TIME OF . 2

TEMPERATURE, “C AGING, h MODULUS, Ib/in.” 5% STRAIN
ROOM TEMP. (30) 0 175
168 169
336 174
135 * 672 181
1008 171

* [N A COVERED (SANDWICH) CONFIGURATION
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Figure 72. Weight Loss as a Function of Covered Photothermal
Aging of PnBA at 135°C
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Figure 73. Weight Loss as a Function of Thermal Aging of PnBA
at 1359C in a Covered (Sandwich) Configuration
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OTHER PROPERTIES

Table 27. Sol/Gel and Molecular Weight Data as a Function of
Open Photothermal Aging of PnBA at 30°C and 135°C
o TIME OF CROSSLINKING

T,"Cl AGING, h | DENSITY, MOL/cm® SOL, % | GEL, %

30 0 4.34 x 107 15 85

84 6.61 x 1074 6 94

168 7.69 x 1074 6 94

135 4
336 8.14 x 10 5 95
672 9.83 x 1074 3 97
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Table 28. Sol/Gel and Molecular Weight Data as a Function of
Covered Photothermal Aging of PnBA at 30°C and 135°C

° TIME OF CROSSLINKING
T°C| AGING, h | DENSITY, MOL/cm® | SOL % | GEL, %
0 4,34 x 1074 15 85
168 4.79 x 1074 1 89’
135 336 27.12 x 107 1 99
672 7.08 x 1074 6 94
1008 14.13 x 1074 6 94
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Table 29. Sol/Gel and Molecular Weight Data as a Function of
Thermal Aging of PnBA at 30°C and 135°C

o TIME OF CROSSLINKING
T,°C| AGING, h | DENSITY, MOL/ecm® | SOL % | GEL, %
30 0 4.34 x 107 15 85
168 4.28 x 1074 16 84
.| 336 4.29 x 1074 16 84
135 .
672 4,18 x 10 16 84
1008 4.37 x 1074 15 85

* IN A CLOSED (SANDWICH) CONFIGURATION
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SECTION VII

POLYURETHANE (H.J. QUINN -- DEVELOPMENT ASSOCIATES Z-2591)

The following figures and tables offer data on optical transmittance
(Figures 74 through 76); mechanical properties (Figures 77 through 80, Tables
30 through 32); weight loss (Figures 81 thrugh 83); other properties (Tables
33 through 35) of polyurethane (H,J. Quinn Co. -- Development Associates

7-2591).
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Figure 74. Change in Optical Transmittance as a Function of

Open Photothermal Aging of Polyurethane at 70°C
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Figure 75. Change in Optical Transmittance as a Function of

Covered Photothermal Aging of Polyurethane at 70°C
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Figure 76. Change in Optical Transmittance as a Function of

Thermal Aging of Polyurethane at 70°C
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MECHANICAL PROPERTIES
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Figure 77. Change in Stress/Strain Response as a Function of
Open Photothermal Aging of Polyurethane at 70°C
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Figure 78. Change in Stress/Strain Response as a Function of
Covered Photothermal Aging of Polyurethane at 70°C
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Table 30. Modulus at 5% Strain as a Function of Open Photothermal
Aging of Polyurethane at 30°C and 70°C

TIME OF

TEMPERATURE, °C AGING, h MODULUS, Ib/in.2 5% STRAIN
ROOM TEMP. (30) 0 380
200 205
70% 400 18

* PU (QUINN)
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Table 31. Modulus at 5% Strain as a Function of Covered Photothermal
Aging of Polyurethane at 30°C and 70°C

TEMPERATURE, °C AnE OF MODULUS, Ib/in.? 5% STRAIN
ROOM TEMP. (30) 0 380
- 200 153
400 154
7
R 168 3
336 FLOW

*  PU (QUINN)
**  PU (DEVELOPMENT ASSOCIATES Z-2591)
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Table 32, Modulus at 5% Strain as a Function of Thermal
Aging of Polyurethane at 30°C and 70°C

TEMPERATURE, °C | TIME OF AGING, h MODULUS, 1b/in.2 5% STRAIN
ROOM TEMP. (30) 0 380
70* 400 300
168 101
135%% ¢ 336 54
* PU (QUINN)

** PU (DEVELOPMENT ASSOCIATES Z~2591)
¢ IN A COVERED (SANDWICH) CONFIGURATION
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I l ]

Figure 81.

100 200 300 400 500
TIME, h

Weight Loss as a Function of Open Photothermal
Aging of Polyurethane (Quinn) at 55°C and 70°C
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WEIGHT LOSS, %
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Figure 82.

500

TIME, h

Weight Loss as a Function of Covered Photothermal
Aging of Polyurethane (Quinn) at 55°C and 70°C
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WEIGHT LOSS, %

12

O 55°C

A 70°C

100 200 300 400
TIME, h
Figure 83. Weight Loss as a Function of Thermal Aging

of Polyurethane (Quinn) at 55°C and 70°C
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D. OTHER PROPERTIES

Table 33. Sol/Gel and Molecular Weight Data as a Function of Open
Photothermal Aging of Polyurethane at 30°C and 70°C

o~| TIMEOF CROSSLINKING MOL WT
T."Cl AGING, h | DENSITY, MOL/em® | SOL, % | GEL, % (SOL)
% o SAMPL 1 [SAMPLE2 | 1 [ 2 [ 1 T 2 1 2
166.0x10°8[ 71.0x 1076 | 4 9
70% 400 57.0 x1076 21 79 10,000
* PU (QUINN)
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Table 34. Sol/Gel and Molecular Weight Data as a Function of{Covered
Photothermal Aging of Polyurethanme at 30°C, 70°C and 135°C

o TIMEOF. |  CROSSLINKING ~ MOLWT
T, ¢ AGING, h DENSITY, MOL/cm3 SOL, % | GEL, % | (SOL)
20 SAMPLE T[samPLE2 | 1] 2 [ 1] 2 | " 2

166.0x 107®} 71.0x 10-6| 4 96 5,000
70* 400 52.0 x 25 75 10,000
168 x 1076 18 82 .
135%*
336 1.1x 1078 12 88

*  PU (QUINN) | _
** Py (DEVELOPMENT ASSOCIATES Z-2591)
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Table 35. So0l/Gel and Molecular Weight Data as a Function of
Thermal Aging of Polyurethane at 30°C, 70°C and 1359C
o TIME OF CROSSLINKING SOL. % GEL. % MOL WT
T,"Cl AGING, h | DENSITY, MOL/em® P r % (SOL)
SAMPLE 1| SAMPLE 2 1 2 1 2 1 2
30 0 3
166.0x10™°| 71.0 x 106| 4 96 5,000
70* 400 105.0 x107° 10,000
168 27.6 x 1076 8 92 .
135**‘J -6
336 4.4 x10 17 83

*  PU (QUINN)
** PU (DEVELOPMENT ASSOCIATES Z-2591)

¢ IN A COVERED (SANDWICH) CONFIGURATICN
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SECTION VIII

KORAD (XCEL CORP.)

Figure 84 offers data on transmittance spectra of Korad (Xcel Corp.).
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Figure 84, UV/VIS Transmittance Spectra as a Function of

Open Photothermal Aging of Korad at 85°C
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SECTION IX

TEDLAR (DU PONT UTB-100)

Figures 85 through 87 offer data on absorbance spectra of Tédlar
(Du Pont UTB-100).
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Figure 85. UV/VIS Absorbance Spectra as a Function of Open
Photothermal Aging of Tedlar UTB-100 at 85°C
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Figure 86. UV/VIS Absorbance Spectra Before and After 30 days

of Aging of Tedlar UTB-100 in CER at 55°C
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FT-IR Absorbance Spectra Before and After 30 days
of Aging of Tedlar UTB-100 in CER at 55°C
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SECTION X

ACRYLAR (3M CO. X-22416)

Figures 88 through 93 offer data on optical properties of Acrylar
(3M Co. X-22416).
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Figure 88, UV/VIS Absorbance Spectra Before and After 34 days

600

of Aging of Acrylar Films (X-22416) in CER

138




100 T T
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ACRYLAR FILM (3 mils)
AFTER 800 h OF
PHOTOTHERMAL AGING
AT 85° AND 6 suns

(NO CHANGE)

TRANSMITTANCE, %
1%, ]
(@]
!
|

- —
L —

0 \_J | 1
400 500 600

WAVELENGTH, nm

Figure 89. UV/VIS Transmittance Spectra Before and After 800 h
of Open Photothermal Aging of Acrylar Film at 859C
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Figure 90. Change in Transmittance of Acrylar Films at

460 nm at 60°C, 709C and 80°C
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Figure 92.
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FT-IR Absorbance Spectra Before and After 34 days of
Aging of Acrylar Films (X-22416) in CER at 55°C
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SECTION XI

KYNAR (PENNWALT CORP.)

Figures 94 and 95 offer data on optical properties and Table 36 offers
data on shrinkage of Kynar (Pennwalt Corp.)
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ABSORPTION (ARBITRARY UNITS)
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Figure 95.
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Reflectance IR Spectra Before and After 29 Hours of
Thermal Aging of Kynar Film in a Dark Oven at 150°C
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Table 36. Shrinkage as a Function of Thermal Aging

of Kynar in Dark Oven at 150°C

TIME OF AGING, h SHHH%RGE, o
0.5 31
1.0 30
2.0 34
3.0 34
5.0 34
29.0 ‘ 34
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