NASA Logo - Jet Propulsion Laboratory    + View the NASA Portal  
JPL Home Earth Solar System Stars & Galaxies Technology
Shuttle Radar Topography Mission

SRTM California IMAGES


Information on:
Hi-Resolution Tiff | Perspective View, SRTM / Landsat, Los Angeles
Hi-Resolution Tiff | Landsat with SRTM Shaded Relief, Los Angeles and Vicinity from Space
Hi-Resolution Tiff | Landsat - SRTM Shaded Relief Comparison, Los Angeles and Vicinity
Hi-Resolution Tiff | Perspective View with Landsat Overlay, Los Angeles Basin
Hi-Resolution Tiff | Shaded Relief with Color as Height California Mosaic with Insets
Hi-Resolution Tiff | Anaglyph Metro Los Angeles, Calif.: Malibu to Mount Baldy
Hi-Resolution Tiff | Perspective View with Landsat Overlay of San Francisco
Hi-Resolution Tiff | Perspective View with Landsat Overlay of Mount Shasta
Hi-Resolution Tiff | Shaded Relief with Color as Height of California Mosaic
Hi-Resolution Tiff | 3-D Perspective View of Mount Shasta
Hi-Resolution Tiff | 3-D Perspective View of San Francisco
Hi-Resolution Tiff | 3-D Perspective View of San Diego
Hi-Resolution Tiff | 3-D Perspective View of Sacramento
Hi-Resolution Tiff | 3-D Perspective View of Los Angeles
Hi-Resolution Tiff | 3-D Perspective View of Palm Springs
Hi-Resolution Tiff | 3-D Perspective View of Mt. Pinos
Hi-Resolution Tiff | 3-D Perspective View of Santa Barbara Coastline
View the California Image Gallery

Perspective View, SRTM / Landsat

Perspective View, SRTM / Landsat

Los Angeles, Calif., is one of the world's largest metropolitan areas with a population of about 15 million people. The urban areas mostly cover the coastal plains and lie within the inland valleys. The intervening and adjacent mountains are generally too rugged for much urban development. This is in large part because the mountains are "young", meaning they are still building (and eroding) in this seismically active (earthquake prone) region.

Earthquake faults commonly lie between the mountains and the lowlands. The San Andreas fault, the largest fault in California, likewise divides the very rugged San Gabriel Mountains from the low-relief Mojave Desert, thus forming a straight topographic boundary between the top center and lower right corner of the image. We present two versions of this perspective image from NASA's Shuttle Radar Topography Mission (SRTM): one with and one without a graphic overlay that maps faults that have been active in Late Quaternary times (white lines). The fault database was provided by the U.S. Geological Survey.

The Landsat image used here was acquired on May 4, 2001, about seven weeks before the summer solstice, so natural terrain shading is not particularly strong. It is also not especially apparent given a view direction (northwest) nearly parallel to the sun illumination (shadows generally fall on the backsides of mountains). Consequently, topographic shading derived from the SRTM elevation model was added to the Landsat image, with a false sun illumination from the left (southwest). This synthetic shading enhances the appearance of the topography.

Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and substantially helps in analyzing the large and growing Landsat image archive. This Landsat 7 Thematic Mapper image was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, S.D.

Elevation data used in this image was acquired by the SRTM aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

Size: View width 134 kilometers (83 miles); view distance 150 kilometers (93 miles)
Location: 34.3 degrees North latitude, 118.4 degrees West longitude
Orientation: View west-northwest, 1.8 X vertical exaggeration
Image Data: Landsat Bands 3, 2+4, 1 as red, green, blue, respectively
Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Landsat 30 meters (98 feet)
Graphic Data: Earthquake faults active in Late Quaternary times Date Acquired: February 2000 (SRTM), May 4, 2001 (Landsat).

Back to top

Landsat with SRTM Shaded Relief

Landsat with SRTM Shaded Relief

Los Angeles and vicinity seen from space, as viewed by the Landsat 7 satellite from an altitude of 437 miles on May 4, 2001. North is at the top. Topographic shading has been enhanced using an elevation data set acquired by the Space Shuttle Endeavour in February 2000. Downtown Los Angeles is just south of the image center, with L.A. and Long Beach harbors to the south, Santa Monica Bay to the west, San Fernando Valley to the northwest, San Gabriel Valley to the east, and Orange County to the southeast. The San Andreas fault forms the straight diagonal mountain front bordering the Mojave Desert at the top of the image. At full resolution, features on the ground as small as 15 meters (49 feet) across can be distinguished, including street patterns and large buildings, as well as boats and their wakes on the ocean. More than ten million people live within this scene.

This image was generated by first geographically matching the Landsat scene to a Shuttle Radar Topography Mission (SRTM) elevation model. A measure of topographic slope along a southeast-northwest trend was then calculated, such that southeast facing slopes appear bright and northwest facing slopes appear dark. This slope image was then added to the enhanced Landsat scene in order to intensify the appearance of topography. Topographic shading was subtle in the original Landsat scene due to the fairly high sun angle (63 degrees above the horizon) during the satellite overflight in late morning of a mid-Spring day.

Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and helps in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

Size: 138.8 kilometers (86.1 miles) by 94.0 kilometers (58.3 miles)
Location: 34.1 degrees North latitude, 118.3 degrees West longitude
Orientation: North at top
Image Data: Landsat bands 3, 2+4, 1 as red, green, blue, respectively, with SRTM shaded relief, plus Landsat panchromatic band 8 added for detail.
Original Data Resolution: SRTM 1 arc-second (30 meters or 98 feet), Landsat color 30 meters (98 feet) sharpened with Landsat panchromatic band (15 meters or 49 feet).
Date Acquired: May 4, 2001 (Landsat), February 2000 (SRTM)

Back to top

Landsat - SRTM Shaded Relief Comparison

Landsat - SRTM Shaded Relief Comparison

Digital elevation models (DEMs), such as those produced by the Shuttle Radar Topography Mission (SRTM), allow user-controlled visualization of the Earth's landforms that is not possible using satellite imagery alone. This three-view comparison shows Los Angeles, Calif., and vicinity, with a Landsat image (only) on the left, a shaded relief rendering of the SRTM DEM on the right, and a merge of the two data sets in the middle. Note that topographic expression in the Landsat image alone is very subtle due to the fairly high sun angle (63 degrees above the horizon) during the satellite overflight in late morning of a mid-Spring day (May 4, 2001). In contrast, computer generated topographic shading of the DEM provides a pure and bold image of topographic expression with a user specified illumination direction. The middle image shows how combining the Landsat and DEM shaded relief can result in a topographically enhanced satellite image in which the information content of both data sets is merged into a single view.

Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and helps in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

Size: 138.8 kilometers (86.1 miles) by 94.0 kilometers (58.3 miles)
Location: 34.1 degrees North latitude, 118.3 degrees West longitude
Orientation: North at top
Image Data: Landsat bands 3, 2+4, 1 as red, green, blue, respectively, with SRTM shaded relief, plus Landsat panchromatic band 8 added for detail.
Original Data Resolution: SRTM 1 arc-second (30 meters or 98 feet), Landsat color 30 meters (98 feet) sharpened with Landsat panchromatic band (15 meters or 49 feet).
Date Acquired: May 4, 2001 (Landsat), February 2000 (SRTM)

Back to top

Perspective View with Landsat Overlay

Anaglyph

Most of Los Angeles is visible in this computer-generated north-northeast perspective viewed from above the Pacific Ocean. In the foreground the hilly Palos Verdes peninsula lies to the left of the harbor at Long Beach, and in the middle distance the various communities that comprise the greater Los Angeles area appear as shades of grey and white. In the distance the San Gabriel Mountains rise up to separate the basin from the Mojave Desert, which can be seen near the top of the image.

This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5 satellite image mosaic. Topographic expression is exaggerated one and one-half times.

Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

Size: View width 70 kilometers (42 miles), View distance 160 kilometers (100 miles)
Location: 34.0 deg. North lat., 118.2 deg. West lon.
Orientation: View north-northeast
Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively
Date Acquired: February 2000 (SRTM)

Back to top

Shaded Relief with Color as Height

Shaded Relief with Color as Height

The diversity of landforms that make up the state of California is evident in this new rendition of the 3-D topography of the state. The Central Valley, flanked on the east by the Sierra Nevada, dominates the scene with San Francisco and Monterey Bays clearly visible at left center. Other features of interest include Lake Tahoe at the edge to the right of San Francisco, Mono Lake below Lake Tahoe, and the Salton Sea at the lower right. The prominent sideways "V" in the southern part of the state is the intersection of the Garlock and San Andreas Faults - to the east is the Mojave Desert. Offshore are the Channel Islands and to the right of them lies the city of Los Angeles. (PIA03333)

Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction. North-facing slopes appear bright and south-facing slopes appear dark. Color coding is directly related to topographic height, with blue and green at the lower elevations, rising through yellow and brown to white at the highest elevations.

Insets:

At more than 4,300 meters (14,000 feet), Mount Shasta is California's tallest volcano and part of the Cascade chain of volcanoes extending south from Washington. This computer-generated perspective viewed from the west also includes Shastina, a slightly smaller volcanic cone left of Shasta's summit; and Black Butte, another volcano in the right foreground. (PIA03328)

The defining landmarks of San Francisco, its bay and the San Andreas Fault are clearly seen in this computer-generated perspective viewed from the south. Running from the bottom of the scene diagonally up to the left, the trough of the San Andreas Fault is occupied by Crystal Springs Reservoir and San Andreas Lake. Interstate 280 winds along the side of the fault. San Francisco International Airport is the angular feature projecting into the bay just below San Bruno Mountain, the elongated ridge cutting across the peninsula. The hills of San Francisco can be seen beyond San Bruno Mountain and beyond the city, the Golden Gate. (PIA03329)

The influence of topography on the growth of the city of San Diego is seen clearly in this computer-generated perspective viewed from the south. The Peninsular Ranges to the east of the city have channeled development of the cities of La Mesa and El Cajon, above the center. San Diego itself clusters around the bay enclosed by Point Loma and Coronado Island. In the mountains to the right, Lower Otay Lake and Sweetwater Reservoir are the dark patches.(PIIA03330)

California's state capitol, Sacramento, can be seen clustered along the American and Sacramento Rivers in this computer-generated perspective viewed from the west. Folsom Lake is in the center and the Sierra Nevada is above, with the edge of Lake Tahoe just visible at top center. (PIA03331)

Most of Los Angeles is visible in this computer-generated north-northeast perspective viewed from above the Pacific Ocean. In the foreground the hilly Palos Verdes peninsula lies to the left of the harbor at Long Beach, and in the middle distance the various communities that comprise the greater Los Angeles area appear as shades of grey and white. In the distance the San Gabriel Mountains rise up to separate the basin from the Mojave Desert, which can be seen near the top of the image.(PIA03348)

The city of Palm Springs nestles at the base of Mount San Jacinto in this computer-generated perspective viewed from the east. The many golf courses in the area show up as irregular green areas while the two prominent lines passing through the middle of the image are Interstate 10 and the adjacent railroad tracks. The San Andreas Fault passes through the middle of the sandy Indio Hills in the foreground. (PIA03334)

Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

California Mosaic: Size: 950 by 1100 kilometers ( 590 by 680 miles)
Location: 32.5-42 degrees North latitude, 114-125 degrees West longitude
Orientation: North toward the top
Image Data: Shaded and colored SRTM elevation model
Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet)
Date Acquired: February 2000
Visit the NASA Planetary Photojournal for detailed captions for insets.

Back to top

Anaglyph

Anaglyph

Mount San Antonio (more commonly known as Mount Baldy) crowns the San Gabriel Mountains northeast of Los Angeles in this computer-generated east-northeast anaglyph perspective viewed from above the Malibu coastline. On the right, the Pacific Ocean and Santa Monica are in the foreground. Further away are downtown Los Angeles and then the San Gabriel Valley, which lies adjacent to the mountain front. The San Fernando Valley appears in the left foreground, separated from the ocean by the Santa Monica Mountains. At 3,068 meters (10,064 feet) Mount Baldy rises above the tree line, exposing bright white rocks that are not snow capped in this early autumn scene.

This anaglyph perspective (stereoscopic 3-D) view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and a Landsat 7 satellite image. Topographic expression is exaggerated one and one-half times. Two perspectives (from slightly differing geographic positions) were created, one for each eye. When viewed through special glasses, the result is a near horizontal view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, S.D.

Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

Size: View width 26 kilometers (16 miles), View distance 85 kilometers (53 miles)
Location: 34.2 degrees North latitude, 118.2 degrees West longitude
Orientation: View east-northeast, 3 degrees below horizontal
Image Data: Mix of Landsat Bands 1,2,3,4 and 8.
Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 15 meters (Band 8) and 30 meters (Bands 1-4) (49 and 98 feet, respectively)
Date Acquired: February 2000 (SRTM), September 20, 1999 (Landsat)

Back to top

Perspective View with Landsat Overlay

Perspective View with Landsat Overlay

The cities of San Francisco and the East Bay are highlighted in this computer-generated perspective viewed from west of the Golden Gate. San Francisco occupies the peninsula jutting into the picture from the right. Golden Gate Park is the long rectangle near its left end and the Presidio is the green area at its tip, from which Golden Gate Bridge crosses to Marin. Treasure Island is the bright spot above San Francisco and Alcatraz Island is the small smudge below and to the left. Across the bay from San Francisco lie Berkeley (left) and Oakland (right). Mount Diablo, a landmark visible for many miles, rises in the distance at the upper right.

This three-dimensional perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced false-color Landsat 5 satellite image. Colors are from Landsat bands 3, 2, and 1 as red, green and blue, respectively. Topographic expression is exaggerated two times.

Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

The Landsat Thematic Mapper image used here came from an on-line mosaic of Landsat images for the continental United States (http://mapus.jpl.nasa.gov), a part of NASA's Digital Earth effort.

Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, DC.

Size: scale varies in this perspective image
Location: 37.5 deg. North lat., 122.3 deg. West lon.
Orientation: looking west
Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively
Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond (30 meters or 98 feet)
Date Acquired: February 2000 (SRTM)

Back to top

Perspective View with Landsat Overlay

Perspective View with Landsat Overlay

The volcanic nature of Mount Shasta is clearly evident in this computer-generated perspective viewed from the northwest. At over 4,300 meters (14,000 feet), Mount Shasta is California's tallest volcano and part of the Cascade chain of volcanoes extending south from Washington. The twin summits of Shasta and Shastina tower over a lava flow on the flank of the volcano. Cutting across the lava flow is the bright line of a railroad. The bright area at the right edge is the town of Weed.

This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced false-color Landsat 5 satellite image. Colors are from Landsat bands 3, 2, and 1 as red, green and blue, respectively. Topographic expression is exaggerated two times.

Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

The Landsat Thematic Mapper image used here came from an online mosaic of Landsat images for the continental United States (http://mapus.jpl.nasa.gov), a part of NASA's Digital Earth effort.

Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

Size: scale varies in this perspective image
Location: 41.4 degrees North latitude, 122.3 degrees West longitude
Orientation: looking southeast
Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively
Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet) Thematic Mapper 1 arcsecond (30 meters or 98 feet)
Date Acquired: February 2000 (SRTM)

Back to top

Shaded Relief with Color as Height

Shaded Relief with Color as Height

The diversity of landforms that make up the state of California is evident in this new rendition of the 3-D topography of the state. The Central Valley, flanked on the east by the Sierra Nevada, dominates the scene with San Francisco and Monterey Bays clearly visible at left center. Other features of interest include Lake Tahoe at the edge to the right of San Francisco, Mono Lake below Lake Tahoe, and the Salton Sea at the lower right. The prominent sideways "V" in the southern part of the state is the intersection of the Garlock and San Andreas Faults - to the east is the Mojave Desert. Offshore are the Channel Islands and to the right of them lies the city of Los Angeles.

Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction. North-facing slopes appear bright and south-facing slopes appear dark. Color coding is directly related to topographic height, with blue and green at the lower elevations, rising through yellow and brown to white at the highest elevations.

Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

Size: 950 by 1100 kilometers ( 590 by 680 miles)
Location: 32.5-42 deg. North lat., 114-125 deg. West lon.
Orientation: North toward the top
Image Data: Shaded and colored SRTM elevation model
Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet)
Date Acquired: February 2000

Back to top

3D Perspective view

3D Perspective View

At more than 4,300 meters (14,000 feet ), Mount Shasta is California's tallest volcano and part of the Cascade chain of volcanoes extending south from Washington. This computer-generated perspective viewed from the west also includes Shastina, a slightly smaller volcanic cone left of Shasta's summit and Black Butte, another volcano in the right foreground.

This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5 satellite image. Topographic expression is exaggerated two times.

Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

Size: scale varies in this perspective image
Location: 41.4 deg. North lat., 122.3 deg. West lon.
Orientation: looking east
Image Data: Landsat Bands 3,2,1 as red, green, blue, respectively
Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond (30 meters or 98 feet)
Date Acquired: February 2000 (SRTM)

Back to top

3D Perspective view

3D Perspective View

The defining landmarks of San Francisco, its bay and the San Andreas Fault are clearly seen in this computer-generated perspective viewed from the south. Running from the bottom of the scene diagonally up to the left, the trough of the San Andreas Fault is occupied by Crystal Springs Reservoir and San Andreas Lake. Interstate 280 winds along the side of the fault. San Francisco International Airport is the angular feature projecting into the bay just below San Bruno Mountain, the elongated ridge cutting across the peninsula. The hills of San Francisco can be seen beyond San Bruno Mountain and beyond the city, the Golden Gate.

This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5 satellite image. Topographic expression is exaggerated two times.

Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

Size: scale varies in this perspective image
Location: 37.5 deg. North lat., 122.3 deg. West lon.
Orientation: looking north
Image Data: Landsat Bands 3,2,1 as red, green, blue, respectively
Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond (30 meters or 98 feet)
Date Acquired: February 2000 (SRTM)

Back to top

3D Perspective view

3D Perspective View

The influence of topography on the growth of the city of San Diego is seen clearly in this computer-generated perspective viewed from the south. The Peninsular Ranges to the east of the city have channeled development of the cities of La Mesa and El Cajon, above the center. San Diego itself clusters around the bay enclosed by Point Loma and Coronado Island. In the mountains to the right, Lower Otay Lake and Sweetwater Reservoir are the dark patches.

This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5 satellite image. Topographic expression is exaggerated two times.

Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

Size: scale varies in this perspective image
Location: 32.6 deg. North lat., 117.1 deg. West lon.
Orientation: looking north
Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively
Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond (30 meters or 98 feet)
Date Acquired: February 2000 (SRTM)

Back to top

3D Perspective view

3D Perspective View

California's state capitol, Sacramento, can be seen clustered along the American and Sacramento Rivers in this computer-generated perspective viewed from the west. Folsom Lake is in the center and the Sierra Nevada is above, with the edge of Lake Tahoe just visible at top center.

This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5 satellite image. Topographic expression is exaggerated two times.

Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

Size: scale varies in this perspective image
Location: 38.6 deg. North lat., 121.3 deg. West lon.
Orientation: looking east
Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively
Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond (30 meters or 98 feet)
Date Acquired: February 2000 (SRTM)

Back to top

3D Perspective view

3D Perspective View

Mount San Antonio (more commonly known as Mount Baldy) crowns the San Gabriel Mountains northeast of Los Angeles in this computer-generated east-northeast perspective viewed from above the Malibu coastline. On the right, the Pacific Ocean and Santa Monica are in the foreground. Further away are downtown Los Angeles (appearing grey) and then the San Gabriel Valley, which lies adjacent to the mountain front. The San Fernando Valley appears in the left foreground, separated from the ocean by the Santa Monica Mountains. At 3,068 meters (10,064 feet) Mount Baldy rises above the tree line, exposing bright white rocks that are not snow capped in this early autumn scene.

This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM), an enhanced color Landsat 7 satellite image, and a false sky. Topographic expression is exaggerated one and one-half times.

Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, S.D.

Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

Size: View width 26 kilometers (16 miles), View distance 85 kilometers (53 miles)
Location: 34.2 deg. North lat., 118.2 deg. West lon.
Orientation: View east-northeast, 3 degrees below horizontal
Image Data: Landsat Bands 3, 2+4, 1 as red, green, blue, respectively, sharpened with Band 8 panchromatic detail
Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 30 meters color plus 15 meters sharpening (98 and 49 feet, respectively)
Date Acquired: February 2000 (SRTM) 20 September 1999 (Landsat)

Back to top

3D Perspective view

3D Perspective View

The city of Palm Springs nestles at the base of Mount San Jacinto in this computer-generated perspective viewed from the east. The many golf courses in the area show up as irregular green areas while the two prominent lines passing through the middle of the image are Interstate 10 and the adjacent railroad tracks. The San Andreas Fault passes through the middle of the sandy Indio Hills in the foreground.

This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5 satellite image. Topographic expression is exaggerated two times.

Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

Size: scale varies in this perspective image
Location: 33.8 deg. North lat., 116.3 deg. West lon.
Orientation: looking west
Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively
Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond (30 meters or 98 feet)
Date Acquired: February 2000 (SRTM)

Back to top

Perspective View with Landsat Overlay

Perspective View with Landsat Overlay

Prominently displayed in this image, Mt. Pinos, at 2,692 meters (8,831 feet) is the highest peak in the Los Padres National Forest. Named for the mantle of pine trees covering its slopes and summit, it offers one of the best stargazing sites in Southern California. Shuttle Radar Topography Mission (SRTM) elevation data were combined with Landsat data to generate this perspective view looking toward the northwest. Not only is the mountain popular with astronomers and astro-photographers, it is also popular for hiking trails and winter sports.

The broad low relief area in the right foreground is Cuddy Valley. Cuddy Valley Road is the bright line on the right (north) side of the valley. Just to the left and paralleling the road is a scarp (cliff) formed by the San Andreas fault. The fault slices through the mountains here and then bends and continues onto the Carrizo Plain (right center horizon). This entire segment of the San Andreas fault broke in a major earthquake in 1857.

Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data match the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive. For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors approximate natural colors.

The elevation data used in this image was acquired by SRTM aboard Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet) long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena.

Distance to Horizon: 176 kilometers (109 miles)
Location: 34.8 deg. North lat., 119.1 deg. West lon.
View: Toward the Northwest
Date Acquired: February 16, 2000 SRTM, December 14, 1984 Landsat

Back to top

Perspective View with Landsat Overlay

Perspective View with Landsat Overlay

This image of the Santa Barbara, California, region provides a beautiful snapshot of the area's rugged mountains and long and varied coastline. Generated using data acquired from the Shuttle Radar Topography Mission (SRTM) and an enhanced Landsat image this is a perspective view toward the southeast, from the Goleta Valley in the foreground to a snow-capped Mount Abel (elevation 2,526 m or 8,286 feet) along the skyline at the left. On a clear day, a pilot might see a similar view shortly before touching down on the east-west runway of the Santa Barbara Airport, seen just to the left of the coastline near the center of image. This area is one of the few places along the U.S. West Coast where because of a south-facing beach, fall and winter sunrises occur over the ocean.

Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data match the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive. For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors approximate natural colors.

The elevation data used in this image was acquired by SRTM aboard Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200-feet) long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif, for NASA's Earth Science Enterprise, Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena.

Location: 34.5 deg. North lat., 119.75 deg. West lon.
View: Northeast
Scale: Scale Varies in this Perspective
Date Acquired: February 16, 2000 SRTM, December 14, 1984 Landsat

Back to top