User Handbook
for Block IV
Silicon Solar Cell Modules

M.I. Smokler

September 1, 1982

Prepared to:
U.S. Department of Energy
Through an Agreement with
National Aeronautics and Space Administration
by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

(JPL PUBLICATION 82-73)
User Handbook
for Block IV
Silicon Solar Cell Modules

M.I. Smokler

September 1, 1982

Prepared for
U.S. Department of Energy
Through an Agreement with
National Aeronautics and Space Administration
by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

(JPL PUBLICATION 82-73)
ABSTRACT

The essential electrical and mechanical characteristics of Block IV photovoltaic solar-cell modules that have been tested by JPL are described. Such module characteristics as power output, nominal operating voltage, current-voltage characteristics, nominal operating cell temperature, and dimensions are tabulated. The limits of the environmental and other stress tests to which the modules are subjected are briefly described. Potential users of modules will find this listing helpful in selecting modules for use in arrays or alone.
CONTENTS

I. INTRODUCTION .. 1

II. MODULE DESCRIPTIONS. .. 5

REFERENCES ... 35

APPENDIXES

A. MISCELLANEOUS MODULES A-1

B. QUALIFICATION TEST PROGRAM B-1

Figures

1. Block IV Modules at JPL Field Test Site 3
2. ARCO Solar Module: Photographic Views 9
3. ARCO Solar Module: Drawing 10
4. ARCO Solar Module: I-V Curves 11
5. ASEC Module: Photographic Views 12
6. ASEC Module: Drawing .. 13
7. ASEC Module: I-V Curves 14
8. GE Module (Residential): Photographic Views 15
9. GE Module (Residential): Drawing 16
10. GE Module (Residential): Installation 17
11. GE Module (Residential): I-V Curves 18
12. Motorola Module: Photographic Views 19
13. Motorola Module: Drawing 20
14. Motorola Module: I-V Curves 21
15. Photowatt Module: Photographic Views 22
16. Photowatt Module: Drawing 23

PRECEDEING PAGE BLANK NOT FILMED
17. Photowatt Module: I-V Curves 24
19. Solarex Module: Drawing 26
20. Solarex Module: I-V Curves 27
22. Solarex Module (Residential) Drawing 29
23. Solarex Module (Residential): Installation 30
25. Spire Module: Photographic Views 32
26. Spire Module: Drawing 33
27. Spire Module: I-V Curves 34
A-1. ARCO Solar Module (Residential): Photographic Views . A-4
A-3. ARCO Solar Module (Residential): Installation A-6
A-5. GE Module (Residential): Photographic Views A-8
A-6. GE Module (Residential): Drawing A-9
A-7. GE Module (Residential): Installation A-10
B-1. Qualification Test Sequence B-2
B-2. Humidity Cycle Regime B-4
Tables

1. Block IV Module Characteristics 7
A-1. Miscellaneous Module Characteristics A-2
SECTION I
INTRODUCTION

The program of the Jet Propulsion Laboratory (JPL) Flat-Plate Solar Array Project (FSA) has included a series of competitive procurements, designated Block I through Block IV, of various quantities of solar cell modules. The objectives of this procurement effort were to stimulate reduction in manufacturing cost by encouraging technology advances and to provide modules for field testing of solar-cell arrays.

Block I included the purchase from five contractors of a quantity of modules having a total power output of approximately 58 kW. These modules were procured to the contractors' specifications as a means of ascertaining the state of the art of terrestrial solar cell modules and of providing modules for early test and applications programs.

Block II, consisting of the purchase of 123 kW of total power capacity from four contractors, introduced a degree of standardization by defining the module design specifications (JPL Document No. 5-342-1, Rev. B) and by providing for a design qualification test program. The Block II modules are described in Reference 1.

Block III consisted of procurement of a 205 kW of total power capacity from five contractors. The design specifications (JPL Document No. 5-342-1, Rev. C) and the qualification test program were essentially the same as those for Block II. The Block III modules are described in Reference 2.

Block IV varied from the prior procurements in that: the design specifications and the qualification tests were more stringent; the procurement allowed proposals from each contractor for either or both of two categories of module, intermediate-load and residential; and the procurement was effected in the form of sequential development and production contracts. Intermediate-load modules, defined in Reference 3, are intended for use in installations providing 20 kW to 500 kW. Typical applications would be power-generating stations for office buildings, apartment complexes, water pumping installations, shopping centers, and small industrial complexes. Residential modules, defined in Reference 4, are intended for rooftop installation on a single-family residence to provide 2 to 10 kW.

Each successful Block IV proposer was awarded a contract for development of about one kW of modules. For each design that completed qualification tests successfully, a subsequent production contract for 1 to 4 kW was issued. The total nominal purchased power from the seven contractors whose modules passed the tests is 32 kW, including development and production modules. The contractors are ARCO Solar, Inc.; Applied Solar Energy Corp. (ASECO); General Electric Co. (GE); Motorola Inc.; Photowatt International, Inc.; Solarex Corp., and Spire Corp. Eight designs are included, of which six are intermediate-load and two are residential. The descriptions of these designs is the content of this handbook.
During the period of the Block IV procurement, modules of four other designs were purchased by JPL, either as part of the Block IV procurement or separately, in the latter case for the purpose of subjecting them to the complete set of Block IV qualification tests. These modules are described in Appendix A. At this time not all of them have completed the qualification tests. The four designs were submitted by ARCO Solar, GE, Solar Power Corp. and Solenergy Corp.

Figure 1, a view of part of the FSA field-test site at JPL, shows some of the Block IV modules assembled for obtaining field-test data in system configurations.

The purpose of this User Handbook is to supply engineering data for planning or investigating the application of Block IV modules. The user is advised of two cautionary statements: first, omission from this document of any solar-cell module does not imply that that module design does not meet the requirements of the Block IV specifications contained in References 3 and 4; second, in conformance with the Block IV specifications, module performance data at Nominal Operating Cell Temperature (NOCT) is based on NOCT values obtained at 100 mW/cm² insolation. However, as current practice is to obtain NOCT values at 80 mW/cm², both values of NOCT are listed for each module. Anyone requiring additional technical information should direct his request to the author, Melvin I. Smokler, or to L. Daniel Runkle, FSA Module Performance and Failure Analysis Area Manager, at the Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, California 91109.
SECTION II

MODULE DESCRIPTIONS

The Block IV intermediate-load modules were obliged to meet the requirements of Reference 3. The principal requirements are:

1. Module power must be defined as the power at Nominal Operating Voltage (V_{NO}) under Standard Operating Conditions (SOC). SOC is defined as an irradiance level of 100 mW/cm2, an optical air mass of AM1.5, and a cell temperature equal to Nominal Operating Cell Temperature (NOCT). NOCT is defined as the cell temperature under the following conditions:

 - **Insolation** = 100 mW/cm2
 - **Air temperature** = 20°C
 - **Average wind velocity** = 1 m/s
 - **Electrical load** = open circuit
 - **Mounting** = normal to solar noon on structure typical of application.

2. Breakdown voltage from terminals to ground must exceed 2000 Vdc.

3. Circuit design must protect against module degradation due to cell heating in a short-circuited module with an open-circuit cell failure.

4. Maximum module dimensions must not exceed 1.2 x 1.2 m (47.244 x 47.244 in.).

5. The modules must withstand the following test environment (see Appendix B for details and criteria):

 - (a) 50 thermal cycles between -40°C and +90°C.
 - (b) 5 cycles of 90% relative humidity between 23°C and 40°C.
 - (c) 10,000 cycles of mechanical cyclic pressure, simulating wind and other loads of ± 2.4 kPa (± 50 lb/ft2).
 - (d) Twisted mounting surface of 20 mm/m (1/4 in./ft).
 - (e) Impact of simulated hailstones of 20 mm (3/4 in.) diameter, travelling at 20.1 m/s (45 mi/h).

The residential modules were obliged to meet the requirements of Reference 4. These requirements are identical with those for the intermediate-load modules except that the breakdown voltage limit is 1500 Vdc and that shingle-type modules must be subjected to a wind-resistance test uplift loading of 1.7 kPa (35 lb/ft2) in lieu of the mechanical cyclic-loading test.
Samples of each module design were subjected to a qualification test program (see Appendix B) to prove compliance with the requirements. In addition, all deliverable modules were subjected to an acceptance test, consisting of measurement of electrical performance and testing of breakdrown voltage.

A detailed description of each of the eight modules is given in Table 1. Some of these details are given in the table in the form of references to photographs, drawings, and I-V curves, all of which are included in this handbook to provide a comprehensive description of the Block IV modules.
Table 1. Block IV Module Characteristics

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>ARCO Solar</th>
<th>ASECo</th>
<th>GL</th>
<th>Motorola</th>
<th>Photowatt</th>
<th>Solarex</th>
<th>Solarex</th>
<th>Spire</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFR's Part No.</td>
<td>012110-E</td>
<td>60-3062-F</td>
<td>473-95-7721-C</td>
<td>MSP430404-G</td>
<td>ML-1951-D</td>
<td>580-ST-4-C</td>
<td>580-ST-R-G</td>
<td>058-0027-A</td>
</tr>
<tr>
<td>Module Type*</td>
<td>INT</td>
<td>INT</td>
<td>RES</td>
<td>INT</td>
<td>INT</td>
<td>INT</td>
<td>RES</td>
<td>INT</td>
</tr>
</tbody>
</table>

Photographic Views
- Figure 2
- Figure 5
- Figure 8
- Figure 12
- Figure 15
- Figure 18
- Figure 21
- Figure 25

Overall Dimensions [in. (mm)]
- Length: 1219 (48.0)
- Width: 305 (12.0)
- Height: 54 (2.1)
- Support Structure Flatness: 20 (0.25)
- Rnt [mm/n (in./ft)]:
 - Module Drawing and Materials: 35
 - Module Installation: 35
 - Electrical Connections: 35
 - Cells: 35

Quantity
- Diameter (in.): 12.9
- Diameter (mm): 32.9
- Size (in.): 32.9
- Size (mm): 32.9

Nominal Performance
- Power, rated (watts): 12.9
- Voltage, rated (volts): 32.9
- Current (amps): 32.9

SOC Performances
- Power, maximum (watts): 12.9
- Voltage, maximum (volts): 12.9
- Current (amps): 12.9

28°C Performance
- Power, maximum (watts): 12.9
- Voltage, maximum (volts): 12.9
- Current (amps): 12.9

I-V curves
- Figure 4
- Figure 7
- Figure 11
- Figure 14
- Figure 17
- Figure 20
- Figure 23
- Figure 27

Circuit Diagram
- Figure 3
- Figure 6
- Figure 9
- Figure 12
- Figure 15
- Figure 18
- Figure 21
- Figure 24
Table 1. Block IV Module Characteristics (Cont'd)

<table>
<thead>
<tr>
<th>Nominal Operating Cell</th>
<th>AEG Solar</th>
<th>ASEG</th>
<th>GE</th>
<th>Motorola</th>
<th>Photovolt</th>
<th>Solarex</th>
<th>Solarex</th>
<th>Spire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature, NAOCT (°C)</td>
<td>52</td>
<td>54</td>
<td>56</td>
<td>54</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>At 100 mW/cm² insolation</td>
<td>44</td>
<td>47</td>
<td>53</td>
<td>49</td>
<td>47</td>
<td>56</td>
<td>56</td>
<td>49</td>
</tr>
<tr>
<td>At 80 mW/cm² insolation</td>
<td>44</td>
<td>47</td>
<td>53</td>
<td>49</td>
<td>47</td>
<td>56</td>
<td>56</td>
<td>49</td>
</tr>
<tr>
<td>Temperature Coefficients</td>
<td>-0.086</td>
<td>-0.083</td>
<td>-0.029</td>
<td>-0.018</td>
<td>-0.020</td>
<td>-0.018</td>
<td>-0.020</td>
<td>-0.029</td>
</tr>
<tr>
<td>ΔE/ΔT (Volts/°C)</td>
<td>+0.0011</td>
<td>+0.0027</td>
<td>+0.0027</td>
<td>+0.0011</td>
<td>+0.0027</td>
<td>+0.0027</td>
<td>+0.0027</td>
<td>+0.0016</td>
</tr>
</tbody>
</table>

Notes

a) Module intended for use in intermediate-load centers, defined here as installations providing 20 kW to 500 kW.

b) Module intended for use on single-family residence in installations providing 10 kW to 10 kW.

c) The data given are tested limits, not module limits. For details see Appendix B (Qualification Test Program).

d) Each module is expected to produce at least 95% of rated power when loaded to provide rated voltage under Standard Operating Conditions (SOC), i.e.,

1. Module irradiated with 100 mW/cm² insolation at air mass 1.5 (AM 1.5) spectrum.
2. Cell temperature equal to NAOCT (per Block IV Specifications; see note d).

The Block IV Specifications define NAOCT (Nominal Operating Cell Temperature) as the cell temperature with the module in the Standard Thermal Environment defined as follows:

- Insolation = 100 mW/cm²
- Air temperature = 25°C
- Average wind velocity = 1 m/s
- Electrical load = open circuit
- Mounting = normal to solar noon on structure typical of application

Practice at the time of publication is to measure NAOCT with the module in the Nominal Thermal Environment, which is the same as the Standard Thermal Environment except that the insolation level is 80 mW/cm².

The data presented here for each module design were obtained by measurement and extrapolation of the performance of one sample module of that design. The radiation source was a Large-Area Pulsed Solar Simulator calibrated by use of a calibrated reference cell of the same spectral response as the module to irradiate the module with the equivalent of 100 mW/cm² at AM1.5. Module temperature was approximately 25°C. Extrapolation was performed by computer, based upon a set of measured temperature coefficients (voltage, current, and series resistance) for each module design. The resultant families of I-V curves for the sample modules are given in Figures 4, 7, 11, 14, 17, 23, 24, and 27.

Modules should not be series-connected to obtain system voltages under worst-case conditions (100 mW/cm² insolation, 0°C cell temperature, open circuit) exceeding:

- 500 volts for intermediate load modules
- 250 volts for residential modules

Not applicable. This module has no exposed conductive surface and is intended for installation in a non-conductive assembly.

These coefficients are for use in the neighborhood of the maximum power points on the module I-V curves. They are useful for determining power output at a selected voltage and temperature when the available I-V curve was made at a different temperature. For details see Reference 3, Appendix B.
Figure 2. ARCO Solar Module: Photographic Views
Figure 4. ARCO Solar Module: I-V Curves
Figure 5. ASEC Module: Photographic Views
Figure 7. ASEC Module: I-V Curves
Figure 8. GE Module (Residential): Photographic Views
Figure 11. GE Module (Residential): I-V Curves
Figure 12. Motorola Module: Photographic Views
Figure 14. Motorola Module: I-V Curves
Figure 15. Photowatt Module: Photographic Views
Figure 17. Photowatt Module: I-V Curves
Figure 18. Solarex Module: Photographic Views
Figure 20. Solarex Module: I-V Curves

MODULE SERIAL NO: 4702-81-44
MODULE IRRADIATION: 100mW/cm², AM1.5

CURRENT (AMPERES)

+80°C

-40°C

VOLTAGE (VOLTS)

+80 +40 0 -40
+60 +20 -20
CELL TEMP (°C)

Figure 20. Solarex Module: I-V Curves
Figure 21. Solarex Module (Residential): Photographic Views
Figure 24. Solarex Module (Residential): I-V Curves
Figure 25. Spire Module: Photographic Views
MODULE SERIAL NO: 017/29 81
MODULE IRRADIATION: 100mW/cm², AM1.5

Figure 27. Spire Module: I-V Curves
REFERENCES

APPENDIX A

MISCELLANEOUS MODULES

The main body of the User Handbook for Block IV Silicon Solar Cell Modules describes all modules meeting two conditions: they were purchased under the Block IV procurement, and they have successfully completed the Block IV qualification tests. This Appendix describes four additional modules that were purchased by JPL but which do not meet, at this time, one or both of the above conditions. The designs are of interest, however, in the context of Block IV technology, so it was considered useful to publish the available data as an Appendix to this User Handbook.

Two of the designs, by ARCO Solar and GE, are of modules that were part of the Block IV procurement. The ARCO Solar module was purchased under a Block IV development contract. The GE module was purchased under a Block IV production contract, but was enough different from the design that had been supplied under the preceding development contract that the design could not be considered qualified until the production modules could be submitted to qualification tests. The other two modules, by Solar Power and Solenergy, were purchased as commercial units specifically for the purpose of submitting them to the complete set of Block IV qualification tests, in contrast with other commercial modules purchased by JPL only for exploratory testing.

Of the four designs, the Solar Power module has successfully completed the qualification tests and the other three have not, at this time, progressed to completion. The qualification test program is typically an iterative process involving detection of problems, consequent redesign of the module or of the manufacturing process, and subsequent submission of modules for a repeat of the qualification tests. Since an essential part of this sequence of events is an option of the manufacturer, it cannot be predicted whether the sequence will, for any of the latter three designs, be pursued to the point of successful completion of the qualification tests. Should the manufacturer of any of these three designs elect to pursue the sequence fully, his final module design may differ from that shown here.

A detailed description of each of the four modules is given in Table A-1, Module Characteristics. Some of these details are given in the form of references to photographs, drawings, and I-V curves, all of which are included in this Appendix.
Table A-1. Miscellaneous Module Characteristics

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>AROO Solar</th>
<th>CE</th>
<th>Solar Power</th>
<th>Solenergy</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFR's Part No.</td>
<td>012431-F</td>
<td>478258296G1-MG</td>
<td>LG12-361-C</td>
<td>0444-Q HEM</td>
</tr>
<tr>
<td>Module Type$</td>
<td>RES</td>
<td>RES</td>
<td>INT</td>
<td>INT</td>
</tr>
<tr>
<td>PHYSICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length (mm)</td>
<td>1200 (47.2)</td>
<td>818 (32.2)</td>
<td>1199 (47.2)</td>
<td>1198 (47.2)</td>
</tr>
<tr>
<td>Width (mm)</td>
<td>583 (23.0)</td>
<td>628 (24.7)</td>
<td>302 (11.9)</td>
<td>454 (17.9)</td>
</tr>
<tr>
<td>Height (mm)</td>
<td>19 (0.8)</td>
<td>7.6 (0.3)</td>
<td>60 (2.4)</td>
<td>44 (1.7)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>5.2 (11.4)</td>
<td>4.0 (8.8)</td>
<td>6.0 (13.2)</td>
<td>13.0 (28.6)</td>
</tr>
<tr>
<td>Support Structure Planarity</td>
<td>note c</td>
<td>note c</td>
<td>20 (0.25)</td>
<td>note c</td>
</tr>
<tr>
<td>GEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Drawing and Materials</td>
<td>Figure A-2</td>
<td>Figure A-6</td>
<td>Figure A-10</td>
<td>Figure A-13</td>
</tr>
<tr>
<td>Module Installation</td>
<td>Figure A-2</td>
<td>Figure A-6</td>
<td>Figure A-10</td>
<td>Figure A-13</td>
</tr>
<tr>
<td>Electrical Connections</td>
<td>Figure A-2</td>
<td>Figure A-6</td>
<td>Figure A-10</td>
<td>Figure A-13</td>
</tr>
<tr>
<td>Cells Quantity</td>
<td>60</td>
<td>19</td>
<td>36</td>
<td>46</td>
</tr>
<tr>
<td>Cells Size [mm (in.)]</td>
<td>Dist: 102.9 (4.05)</td>
<td>Dist: 100 (3.94)</td>
<td>Dist: 100 (3.94)</td>
<td>100 x 100 (3.9 x 3.9)</td>
</tr>
<tr>
<td>Packing factor</td>
<td>0.79</td>
<td>0.76</td>
<td>0.76</td>
<td>0.81</td>
</tr>
<tr>
<td>Base material Ca</td>
<td>Ca</td>
<td>Ca</td>
<td>p/n</td>
<td>p/n</td>
</tr>
<tr>
<td>Junction</td>
<td>n/p</td>
<td>n/p</td>
<td>p/n</td>
<td>p/n</td>
</tr>
<tr>
<td>Front metallization</td>
<td>Printed Ag</td>
<td>Printed Ag</td>
<td>Ni-Solder</td>
<td>Au-Ni-Solder</td>
</tr>
<tr>
<td>Back metallization</td>
<td>Printed Ag</td>
<td>Printed Ag</td>
<td>Ni-Solder</td>
<td>Au-Ni-Solder</td>
</tr>
<tr>
<td>ELECTRICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal Performance$</td>
<td>49.0</td>
<td>15.0</td>
<td>27.3</td>
<td>33.8</td>
</tr>
<tr>
<td>Power, rated (watts)</td>
<td>7.7</td>
<td>7.0</td>
<td>15.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Voltage, rated (volts)</td>
<td>6.4</td>
<td>2.14</td>
<td>1.82</td>
<td>8.4</td>
</tr>
<tr>
<td>Current (amps)</td>
<td>6.4</td>
<td>2.14</td>
<td>1.82</td>
<td>8.4</td>
</tr>
<tr>
<td>SOC Performance</td>
<td>48.8</td>
<td>15.5</td>
<td>27.3</td>
<td>32.2</td>
</tr>
<tr>
<td>Power, maximum (watts)</td>
<td>7.8</td>
<td>6.81</td>
<td>15.0</td>
<td>3.81</td>
</tr>
<tr>
<td>Voltage at max power (volts)</td>
<td>6.16</td>
<td>2.57</td>
<td>1.82</td>
<td>8.46</td>
</tr>
<tr>
<td>Current at max power (amps)</td>
<td>10.2</td>
<td>9.40</td>
<td>19.9</td>
<td>5.30</td>
</tr>
<tr>
<td>Voltage, open circuit (volts)</td>
<td>7.0</td>
<td>2.59</td>
<td>2.04</td>
<td>9.68</td>
</tr>
<tr>
<td>Current short circuit (amps)</td>
<td>0.68</td>
<td>0.64</td>
<td>0.67</td>
<td>0.65</td>
</tr>
<tr>
<td>Fill factor</td>
<td>8.0</td>
<td>7.9</td>
<td>7.5</td>
<td>5.9</td>
</tr>
<tr>
<td>Efficiency, Module (%)</td>
<td>10.1</td>
<td>10.4</td>
<td>9.9</td>
<td>7.3</td>
</tr>
<tr>
<td>Eff., encapsulated cell (%)</td>
<td>59.5</td>
<td>20.0</td>
<td>30.9</td>
<td>38.4</td>
</tr>
<tr>
<td>28°C Performance</td>
<td>48.8</td>
<td>15.5</td>
<td>27.3</td>
<td>32.2</td>
</tr>
<tr>
<td>Power, maximum (watts)</td>
<td>9.4</td>
<td>8.9</td>
<td>13.3</td>
<td>4.52</td>
</tr>
<tr>
<td>Voltage at max power (volts)</td>
<td>6.36</td>
<td>2.25</td>
<td>1.78</td>
<td>8.50</td>
</tr>
<tr>
<td>Current at max power (amps)</td>
<td>11.8</td>
<td>11.1</td>
<td>21.6</td>
<td>6.04</td>
</tr>
<tr>
<td>Voltage, open circuit (volts)</td>
<td>6.94</td>
<td>2.60</td>
<td>2.03</td>
<td>9.55</td>
</tr>
<tr>
<td>Current short circuit (amps)</td>
<td>0.73</td>
<td>0.69</td>
<td>0.70</td>
<td>0.66</td>
</tr>
<tr>
<td>Fill factor</td>
<td>9.7</td>
<td>10.2</td>
<td>8.5</td>
<td>7.0</td>
</tr>
<tr>
<td>Efficiency, module (%)</td>
<td>12.3</td>
<td>13.4</td>
<td>11.2</td>
<td>8.6</td>
</tr>
<tr>
<td>Eff., encapsulated cell (%)</td>
<td>I-V Curves$</td>
<td>Figure A-4</td>
<td>Figure A-8</td>
<td>Figure A-11</td>
</tr>
<tr>
<td>Circuit Diagram</td>
<td>Figure A-2</td>
<td>Figure A-6</td>
<td>Figure A-10</td>
<td>Figure A-13</td>
</tr>
<tr>
<td>Breakdown Voltage, Min. (Vdc)$h</td>
<td>note c</td>
<td>note h</td>
<td>2000</td>
<td>note c</td>
</tr>
<tr>
<td>Nominal Operating Cell Temperature, NOCT (°C)(^c)</td>
<td>ARCO Solar</td>
<td>GE</td>
<td>Solar Power</td>
<td>Solenergy</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>----</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>At 100 mW/cm(^2) insolation</td>
<td>65</td>
<td>68</td>
<td>54</td>
<td>58(^j)</td>
</tr>
<tr>
<td>At 80 mW/cm(^2) insolation</td>
<td>55</td>
<td>58</td>
<td>47</td>
<td>50</td>
</tr>
<tr>
<td>Temperature Coefficients(^1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta V/\Delta T) (Volts/°C)</td>
<td>-0.047</td>
<td>-0.047</td>
<td>-0.078</td>
<td>-0.027</td>
</tr>
<tr>
<td>(\Delta I/\Delta T) (Amps/°C)</td>
<td>+0.0009</td>
<td>+0.0009</td>
<td>+0.0011</td>
<td>+0.0059</td>
</tr>
<tr>
<td>Temperature range (°C)(^b)</td>
<td>note c</td>
<td>note c</td>
<td>-40 to +90</td>
<td>note c</td>
</tr>
<tr>
<td>Humidity, max relative (%)(^b)</td>
<td>note c</td>
<td>note c</td>
<td>90</td>
<td>note c</td>
</tr>
<tr>
<td>Wind load, max (kPa (lbs/in(^2))(^b)</td>
<td>note c</td>
<td>note c</td>
<td>-2.4 (-50)</td>
<td>note c</td>
</tr>
<tr>
<td>Rain impact, max ballast (oz (in.))(^b)</td>
<td>note c</td>
<td>note c</td>
<td>20.0 (0.75)</td>
<td>note c</td>
</tr>
</tbody>
</table>

Notes

\(^a\) INT = Module intended for use in intermediate-load centers, defined here as installations providing 20 kW to 500 kW.
\(^b\) This design test is not applicable for intermediate load modules.
\(^c\) NOCT = Module intended for use on single-family residence in installations providing 2 kW to 10 kW.
\(^d\) The data given are tested limits, not module limits. For details see Appendix A (Qualification Test Program).
\(^e\) Qualification (see Appendix A) not completed at this time.
\(^f\) Each module is expected to produce not less than 90% of rated power when heated to provide rated voltage under Standard Operating Conditions (SOC), i.e.:
1. Module irradiated with 100 mW/cm\(^2\) insolation at air mass 1.5 (AM1.5) spectrum.
2. Cell temperature equal to NOCT (per Block IV Specifications; see note e).
\(^g\) The Block IV Specifications define NOCT (Nominal Operating Cell Temperature) as the cell temperature with the module in the Standard Thermal Environment defined as follows:
- Insolation = 100 mW/cm\(^2\)
- Air temperature = 20°C
- Average wind velocity = 1 m/s
- Electrical load = open circuit
- Mounting = normal to solar noon on structure typical of application
\(^h\) Not applicable. This module has no exposed conductive surface and is intended for installation in a non-conductive assembly.
\(^i\) The data presented here for each module design were obtained by measurement and extrapolation of the performance of one sample module of that design. The radiation source was a Large-Area Pulsed Solar Simulator calibrated by use of a calibrated reference cell of the same spectral response as the module to irradiate the module with the equivalent of 100 mW/cm\(^2\) at AM1.5. Module temperature was approximately 20°C. Extrapolation was performed by computer, based upon a set of measured temperature coefficients (voltage, current, and series resistance) for each module design. The resultant families of I-V curves for the sample modules are given in Figures A-4, A-8, A-11, and A-14.
\(^j\) Nominal output for module power under worst-case conditions (100 mW/cm\(^2\) insolation, 6°C cell temperature, open circuit) exceeding:
- 500 watts for intermediate load modules
- 250 watts for residential modules
\(^k\) Not applicable. This module has no exposed conductive surface and is intended for installation in a non-conductive assembly.
\(^l\) These coefficients are for use in the neighborhood of the maximum power points on the module I-V curves. They are useful for determining power output at a selected voltage and temperature when the available I-V curve was made at a different temperature. For details see Reference 3, Appendix A.
\(^m\) Estimate; based on small data sample
\(^n\) The insulation level is 80 mW/cm\(^2\).
Figure A-1. ARCO Solar Module (Residential): Photographic Views
MODULE SERIAL NO: 200042
MODULE IRRADIATION: 100mW/cm², AM1.5

Figure A-4. ARCO Solar Module (Residential): I-V Curves
Figure A-7. GE Module (Residential): Installation
Figure A-8. GE Module (Residential): I-V Curves
Figure A-9. Solar Power Module: Photographic Views
Figure A-11. Solar Power Module: I-V Curves
Figure A-12. Solenergy Module: Photographic Views
Figure A-13. Solenergy Module: Drawing
Figure A-14. Solenergy Module: I-V Curves
APPENDIX B
QUALIFICATION TEST PROGRAM

Each Block IV design was subjected to a series of qualification tests to prove compliance with the required ranges of environmental exposure. Typically, four modules were used for most tests. Qualification of a design means that modules of that specific detailed design and processing have been shown capable of withstanding the stresses of the test program without more than 5% power degradation, without visible degradation exceeding preselected criteria, and without failure of a dielectric breakdown test.

The Block IV qualification tests are defined in References 3 and 4. A simplified description of the tests is presented here for convenience in understanding the data in this User Handbook.

The block diagram in Figure B-1 shows the qualification test sequence with the names of individual tests given in blocks that are alphabetically coded to key them to the descriptions below. Note that some tests occur more than once in the sequence. The description of each test is as follows:

A. Visual Inspection

This consists of detailed visual examination of the module for mechanical degradation exceeding preselected criteria for that module design. The criteria reflect a judgment of degradation that threatens continued successful performance of the module. Such degradation may appear as breaks, cracks, delamination, spalling, etc.

B. Ground Continuity

This test verifies that, in a module with exposed external conducting surfaces (such as a metal frame), electrical continuity exists between all such surfaces and the module grounding point, with resistance to the grounding point not greater than 50 milliohms.

C. Dielectric Breakdown

This test verifies that the insulation between the (shorted-together) output terminals of the module and module metal frame or ground will not suffer dielectric breakdown when subjected to 2000 Vdc for an intermediate-load module or 1500 Vdc for a residential module. The voltage is applied at a rate not exceeding 500 V/s up to the test value and then held constant for 1 min. Failure is defined as arcing, flashover, or leakage current exceeding 50 A. For modules not required to have a grounding point, the test is done with the module installed in a mounting structure, with the test voltage negative connection contacting the mounting structure. For residential modules, the test does not apply if the module is intended to be mounted in a non-conductive assembly.
Figure B-1. Qualification Test Sequence
Although not part of the qualification test specification, by agreement with the Block IV manufacturers an additional dielectric breakdown test was done with the polarity reversed, i.e., with negative voltage on the module output terminals and positive voltage on the grounding point or mounting structure as applicable.

D. Electrical Performance

The purpose of this test is to obtain current-voltage (I-V) characteristic curves, first to establish a performance baseline, and subsequently to examine for performance degradation resulting from the stresses of the qualification tests. The criteria for excess degradation is a reduction in maximum power (measured at 100 mW/cm², AM1.5 input and 28°C cell temperature) exceeding 5%.

An additional purpose of the baseline electrical performance test is to verify that the module power output is acceptable, defined as not less than 90% of the nominal power expected from the module at its stipulated nominal output voltage and at 100 mW/cm², AM1.5 input, with cell temperature equal to Nominal Operating Cell Temperature (NOCT). For this purpose the module I-V curve is measured at the same irradiance but with the cells at room temperature. The room-temperature data are then extrapolated, using module temperature coefficients, to calculate module power at NOCT at the nominal output voltage.

E. Thermal Cycling

This test requires that the module be subjected to 50 cycles of cell-temperature variation between -40°C and +90°C. The variation is approximately linear, at a rate not exceeding 100°C per hour, with a period not exceeding six hours per cycle.

F. Humidity Cycling

This test requires that the module be subjected to the humidity regime depicted in Figure B-2. The subsequent electrical performance test must follow within one hour of removal of the module from the humidity chamber.

G. Mechanical Load Cycling

This test verifies, by simulation, that a wind that produces peak mechanical loading amplitudes of ±2.4 kPa (±50 lbs/ft²) on intermediate-load modules or ±1.7 kPa (±35 lb/ft²) on panel-type residential modules will not result in mechanical or electrical degradation. The test is performed by applying 10,000 cycles of mechanical load, normal to the module surface. This test is not applicable to shingle-type modules.
H. Wind Resistance

This test verifies, by use of a wind machine providing uplift force, that shingle-type residential modules will withstand an uplift pressure of 1.7 kPa (35 lb/ft²).

I. Twist

This test verifies that mounting the module on a twisted mounting surface with planarity deviation of ±20 mm/m (+1/4 in./ft) will not cause module damage.

J. Hail

This test verifies that the module will not be damaged by impact of simulated hailstones (ice balls) 20 mm (3/4 in) in diameter, travelling at 20.1 m/s (45 mi/h). The test includes at least three impacts at each of at least the three points on the module most sensitive to impact, as determined experimentally.