PREDICTING PHOTOTHERMAL FIELD PERFORMANCE

JET PROPULSION LABORATORY

C.C. Gonzalez
R.G. Ross, Jr.

Objective and Approach

- Extrapolate photothermal accelerated test data to simulate 30-year field exposure
 - Develop an analytical model incorporating the measured dependency between transmittance loss and UV and temperature exposure levels
 - Exercise the model using SOLMET weather data extrapolated to 30 years for various sites and module-mounting configurations

Analytical Model Assumptions and Characteristics

- Encapsulant optical transmittance can be expressed as a function of the concentration of a given reactive species, Q
- Rate of variation of concentration, Q/t, is a reaction rate
- Standard reaction-rate equations, Arrhenius and power-law relationships are used to relate Q/t to the stress levels
- Two competing reactions occur simultaneously, one causing the increase of yellowing and one bleaching out the yellowing
 - Principle of superposition is assumed; order in which environmental levels occur not important
- Arbitrary constants a_1 to a_{10} determined by least-squares fitting of experimental optical transmittance (as a function of temperature and UV) versus time data
Analytical Model

- Two equations developed:
 \[
 \frac{\tau}{\tau_0} = 1 + a_1 Q + a_2 Q^2 + a_3 Q^3
 \]
 \[
 \frac{Q}{t} = e^{(a_4/T)} + a_6 e^{(a_8/T)} S^{a_7} - a_9 e^{(a_{10}/T)} S^{a_{10}}
 \]

Where:
- \(\tau \) = transmittance at 440 nm
- \(\tau_0 \) = initial transmittance at 440 nm
- \(Q \) = concentration
- \(a_i \) = constant
- \(t \) = time
- \(T \) = temperature in °K
- \(S \) = UV level in suns

Reaction Rate (Q/Time) vs UV Level
As a Function of Temperature (EVA)
Transmittance Loss vs Concentration, Q (EVA)

Transmittance Loss vs Time (EVA)

Temperature = 135°C
Arrhenius Plot of Reaction Rate (Q/Time) vs Temperature (EVA)

Derivation of Photovoltaic Degradation From 440-nm Transmittance Loss

- 440-nm transmittance loss defines unique spectral transmittance curve for encapsulant
- Photovoltaic response requires convolution of encapsulant transmittance curve, cell spectral response curve, and solar distribution curve (global spectrum)
- Two-cell spectral response models used, one for crystalline silicon and one for amorphous silicon cells
30-Year Transmittance, %, vs Wavelength for EVA

Spectral Response Curves of Crystalline and Amorphous Silicon Cells
Determining 30-Year Degradation Using Photothermal Degradation Simulation Model

- Calculate 30-year field exposure environment using hourly SOLMET weather data tapes
 - Encapsulant operating temperatures computed as a function of irradiance level on tilted surface and ambient air temperature
 - UV level computed as a fixed 5% of the solar irradiance level
 - Results presented as matrix of annual number of exposure hours at each combination of temperature and UV level

- Simulate 30-year photothermal degradation using simulation model and environmental stress matrix
 - Matrix of reaction rates, Q/t, determined for temperature and UV levels in exposure-hours matrix
 - The product is taken of the two matrices
 - The sum of the values in each element of the last matrix yields the concentration Q at the end of a year
 - 30-year concentration is 30 times annual value
Annual Hours of Exposure of a Ground-Mounted Array to Various Cell Temperatures and UV Levels (Phoenix)

<table>
<thead>
<tr>
<th>Cell temperature, °C</th>
<th>UV level in suns</th>
<th>0.05</th>
<th>0.15</th>
<th>0.25</th>
<th>0.35</th>
<th>0.45</th>
<th>0.55</th>
<th>0.65</th>
<th>0.75</th>
<th>0.85</th>
<th>0.95</th>
<th>1.05</th>
<th>1.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>17</td>
<td>24</td>
<td>107</td>
<td>294</td>
<td>167</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>56</td>
<td>130</td>
<td>81</td>
<td>201</td>
<td>142</td>
<td>177</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>22</td>
<td>74</td>
<td>32</td>
<td>110</td>
<td>82</td>
<td>144</td>
<td>73</td>
<td>172</td>
<td>154</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>134</td>
<td>131</td>
<td>63</td>
<td>124</td>
<td>97</td>
<td>93</td>
<td>113</td>
<td>49</td>
<td>53</td>
<td>17</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>190</td>
<td>129</td>
<td>92</td>
<td>86</td>
<td>53</td>
<td>21</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>129</td>
<td>94</td>
<td>36</td>
<td>35</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>55</td>
<td>20</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Relative Values of Reaction Rates (Q/Time) for Various Cell Temperatures and UV Levels

<table>
<thead>
<tr>
<th>Cell temperature, °C</th>
<th>Relative values of reaction rates, Q/time</th>
<th>UV level in suns</th>
<th>0.05</th>
<th>0.15</th>
<th>0.25</th>
<th>0.35</th>
<th>0.45</th>
<th>0.55</th>
<th>0.65</th>
<th>0.75</th>
<th>0.85</th>
<th>0.95</th>
<th>1.05</th>
<th>1.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td></td>
<td></td>
<td>65</td>
<td>61</td>
<td>58</td>
<td>55</td>
<td>52</td>
<td>49</td>
<td>48</td>
<td>44</td>
<td>41</td>
<td>39</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td>33</td>
<td>31</td>
<td>29</td>
<td>28</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>1</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Photovoltaic Power Loss After 30 Years in Phoenix* (EVA)

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Ground-mounted array</th>
<th>Roof-mounted array</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystalline cell</td>
<td>3.5%</td>
<td>7.9%</td>
</tr>
<tr>
<td>Amorphous cell**</td>
<td>8.1%</td>
<td>17.8%</td>
</tr>
</tbody>
</table>

30-year allocation for this degradation mode is 6%

*Based on assumed UV acceleration factor distribution near one sun

**Only when EVA is between module front surface and cells

Conclusions

- Temperature is key driver to photothermally induced transmittance loss (approximate doubling of rate per 10°C)
- Sensitivity of transmittance loss to UV level is highly nonlinear with minimum in curve near one sun
- EVA results consistent with 30-year life allocation

Future Work

- Refine analytical model using additional data taken in region of one sun
- Repeat the thermal-UV exposure tests with the addition of humidity to study the impact of this variable
- Investigate the use of techniques similar to those discussed here for determining the photothermal degradation of encapsulant mechanical properties over 30-year life