PV Reliability Development Lessons from JPL's Flat Plate Solar Array Project

Dr. R.G. Ross, Jr.
FSA Engineering and Reliability Mngr, 1975-1990

June 17, 2013

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California
Topics

- Overview of the FSA Program Approach
 - Closed-loop module development process
 - Program players and roles

- Reliability Management Lessons
 - Closed-loop process
 - Defining reliability requirements
 - Measuring reliability against requirements

- Reliability Development Lessons
 - Large applications for problem identification
 - Computer simulations for life prediction
 - Failure analysis and reliability physics research
 - Qual tests for rapid product assessment

- Summary Observations
DoE / FSA Program Approach to PV Module Development

- **Requirements Research**
 - JPL Lead

- **Module Tech Base Development**

- **Module Design Synthesis**

- **Prototype Production & Qual Test**
 - PV Manufacturer Lead

- **Module Large-scale Production**

- **Accelerated Life & Field Testing**

- **Field Perf. Data Acquisition**
 - Gov't Lead (NASA-GRC, MIT/LL, Sandia)

- **Fielded PV Applications**

- **Balance of System Development**
By the mid 1980s we'd completed some big full-scale systems.
Evolution of Reliability Issues during FSA Project (1975-1985)

<table>
<thead>
<tr>
<th>Problem Area</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Bond Delamination</td>
<td></td>
</tr>
<tr>
<td>Interconnect Fatigue</td>
<td></td>
</tr>
<tr>
<td>Metallization Corrosion</td>
<td></td>
</tr>
<tr>
<td>Electrochemical Corrosion</td>
<td></td>
</tr>
<tr>
<td>Photothermal Degradation</td>
<td></td>
</tr>
<tr>
<td>Structural Failure</td>
<td></td>
</tr>
<tr>
<td>Hail Impact Damage</td>
<td></td>
</tr>
<tr>
<td>Glass Breakage</td>
<td></td>
</tr>
<tr>
<td>Cell Cracking</td>
<td></td>
</tr>
<tr>
<td>Voltage Breakdown</td>
<td></td>
</tr>
<tr>
<td>HotSpot Heating</td>
<td></td>
</tr>
<tr>
<td>Excessive Soiling</td>
<td></td>
</tr>
<tr>
<td>Module Arcs and Fires</td>
<td></td>
</tr>
<tr>
<td>High Operating Temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>84</td>
</tr>
</tbody>
</table>
Example Reliability Requirements at System & Components Level

Type of Degradation

<table>
<thead>
<tr>
<th>Component failures</th>
<th>Power Degradation</th>
<th>Module failures</th>
<th>Life-limiting wearout</th>
</tr>
</thead>
</table>

Failure Mechanism

- Open-circuit cracked cells
- Short circuit cells
- Interconnect open circuits
- Cell gradual power loss
- Module optical degradation
- Front surface soiling
- Module glass breakage
- Module open circuits
- Module hot-spot failures
- Bypass diode failures
- Module shorts to ground
- Module delamination
- Encapsulant failure due to loss of stabilizers

Units of Degradation

- %/yr
- %/yr²
- %
- years

Level for 10% Power Degradation

- Increase
- Allocation for 30-year Life Module
- Economic Penalty

Allocation for 30-year Life Module

- Energy
- O&M

Normalized Power Output

- Baseline

Working Definition

- Years

Economic Penalty

- 1 PER 20,000 PER YEAR
- 0.2 % PER YEAR
- 1 PER 1,000 PER YEAR

Example Reliability Requirements at System & Components Level

- 1 PER 20,000 PER YEAR
- 0.2 % PER YEAR
- 1 PER 1,000 PER YEAR

Working Definition

- Years

Notes

- *k=discount rate,
- †Very difficult to measure in module level testing
Reliability Requirements
Ranked by Difficulty

- **System Operating Voltage**
 - Large number of series cells magnifies component failure effects
 - High voltage exacerbates corrosion and safety issues

- **Operating Temperature and Temperature Cycles**
 - Accelerates nearly all failure mechanisms
 - x2 life reduction for each 10°C increase in Temperature

- **Ambient Humidity Level**
 - x2 life reduction for each 10% increase in Relative Humidity

- **Ultraviolet Exposure Level**
 - Encapsulant degradation (highly nonlinear with UV level)

- **Ambient Soiling Level**
 - Much worse in urban environments

- **Maximum Hail Size**
 - Site specific, a problem with early applications in central US

- **Presence of Salt Fog**
 - Very specific to marine locations

- **Maximum Wind & Snow Loads**
 - Site specific, generally not a significant issue
Site Specific Effects of Temperature, Humidity and Voltage

Plots of Temp/Humidity chamber exposure equivalent to 20-year field exposure at indicated sites based on integrating SOLMET hourly weather data

For 24-hour/day Field Exposure

- MIAMI
- BOSTON
- PHOENIX

Factor of 2 per 10 points (T+RH)

85°C + 85% RH

Time, hours

Temp (°C) + RH (%)

100 140 170 200

Bottom Line: 10°C increase in Temp or 10% increase in RH drops life by factor of 2

For daylight-hours/day Field Exposure

- MIAMI
- BOSTON
- PHOENIX

Factor of 2 per 10 points (T+RH)

85°C + 85% RH

Time, hours

Temp (°C) + RH (%)

100 140 170 200

Time, days

360 180 90 45 20 10 5 2 1
Transmission Loss through EVA vs Temperature and UV Level

UV response is very nonlinear and difficult to accelerate

\[
\frac{\tau}{\tau_0} = 1 + a_1 Q + a_2 Q^2 + a_3 Q^3
\]

\[
\frac{Q}{t} = e^{(a_4/T)} + a_5 e^{(a_6/T)} S_{a_7} - a_8 e^{(a_9/T)} S_{a_{10}}
\]
Transmission Loss through EVA Increases Arrheniusly with Temp

- Thermal response is relatively predictable (typically Arrhenius with approx. rate doubling each 10°C)
- Accurate regulation of temperature is critical to successful UV testing
Hourly Calculation of EVA Yellowing Rate in Phoenix

Yellowing Rate at each Temperature-UV Level

<table>
<thead>
<tr>
<th>Cell temperature, °C</th>
<th>UV level in suns</th>
<th>0.05</th>
<th>0.15</th>
<th>0.25</th>
<th>0.35</th>
<th>0.45</th>
<th>0.55</th>
<th>0.65</th>
<th>0.75</th>
<th>0.85</th>
<th>0.95</th>
<th>1.05</th>
<th>1.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td></td>
<td>65</td>
<td>61</td>
<td>58</td>
<td>55</td>
<td>52</td>
<td>49</td>
<td>46</td>
<td>44</td>
<td>41</td>
<td>39</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>33</td>
<td>31</td>
<td>29</td>
<td>28</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Annual Hours at each Temperature-UV Level

<table>
<thead>
<tr>
<th>Cell temperature, °C</th>
<th>UV level in suns</th>
<th>0.05</th>
<th>0.15</th>
<th>0.25</th>
<th>0.35</th>
<th>0.45</th>
<th>0.55</th>
<th>0.65</th>
<th>0.75</th>
<th>0.85</th>
<th>0.95</th>
<th>1.05</th>
<th>1.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>17</td>
<td>24</td>
<td>107</td>
<td>294</td>
<td>167</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>18</td>
<td>56</td>
<td>130</td>
<td>81</td>
<td>201</td>
<td>142</td>
<td>177</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>22</td>
<td>74</td>
<td>32</td>
<td>110</td>
<td>62</td>
<td>84</td>
<td>144</td>
<td>73</td>
<td>172</td>
<td>154</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>134</td>
<td>131</td>
<td>63</td>
<td>124</td>
<td>97</td>
<td>93</td>
<td>113</td>
<td>49</td>
<td>53</td>
<td>17</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>190</td>
<td>129</td>
<td>92</td>
<td>86</td>
<td>53</td>
<td>21</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>129</td>
<td>94</td>
<td>36</td>
<td>35</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>55</td>
<td>20</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Predicted power loss after 30-years in Phoenix:

- **Ground-mounted array = 3.5%**
- **Roof-mounted array = 7.9%**

Because roof array operates at higher temperature
FSA Project Relied on a Variety of Test methods

- **Large Application Experiments** that include all system-level interfaces
 - Extremely valuable for quantifying reliability of mature designs and identifying failures driven by complex interfaces
 - Outdoor Test Racks of minimal value: unaccelerated and lack key system voltage-current interface conditions

- **Laboratory Research and Life Tests**
 - High value for quantifying reliability physics parameter dependencies and resolving reliability problems

- **Qualification (or screening) Tests**
 - High value for screening new designs for known failures
Full-Up System-Level Testing
Objectives and Attributes

OBJECTIVE

• To accurately assess hardware functionality and reliability in big systems with emphasis on system synergisms, interactions, and interfaces

ADVANTAGES

• Complete system interfaces and operating conditions provides reliable assessment of subsystem compatibility issues and degradation mechanisms associated with large numbers of modules with real system interactions and operational stresses
• Inclusion of balance-of-system (BOS) hardware provides data and confidence in complete functional system

LIMITATIONS

• Requires complete system with all important balance-of-system components and interfaces
• Occurs very late in the design cycle; problems at this point are highly visible and expensive
• Added complexity in constructing and testing complete system
Characterization and Accelerated Life Testing Objectives and Attributes

OBJECTIVE

• To understand and quantify the fundamental interdependencies between performance (failure level), environmental and operational stress level, hardware materials and construction features, and time

ADVANTAGES

• Mechanism-level understanding achieved by selecting specialized tests and facilities targeted at specific degradation stress environments and construction material parameters

• Carefully controlled parameters (generally at parametric levels) with acceleration consistent with accurate extrapolation to use conditions

LIMITATIONS

• Expensive and time consuming — requires specialized testing equipment and modestly long test durations (2 weeks to 5 years)

• Requires multiple tests to address the total spectrum of degradation mechanisms and levels

• Number of specimens insufficient to quantify random failures
Key Output of Reliab. Physics Testing was TechBase for Module Design

- **New lamination adhesives**, primers, and stabilizers (PVB, EVA, EMA) for lower cost and improved weathering
- **Circuit redundancy configurations** for controlling cell cracking and broken interconnects
- **Interconnect design and test methods**
- **Cell attachment techniques** to minimize losses due to cell cracking
- **Glass strength** calculation methods
- **Bypass diode design** and hotspot test methods
- **Hail resistance data** and test methods
- **Cell fracture strength** and test methods
- **Voltage breakdown data** and test methods
- **Electrochem corrosion** data and test methods
- **UV-thermal durability data** and test methods
Qualification Testing
Objectives and Attributes

OBJECTIVE

- To rapidly and economically screen module designs for prominent failure mechanisms
- To rapidly assess the *relative durability* of alternative designs

ADVANTAGES

- Quick turnaround — relatively inexpensive
- Relatively standard procedures allows inter-comparison with historical data
- Separate tests for important environmental and operational stresses aids identification of high-risk mechanisms

LIMITATIONS

- Minimal life-prediction capability (a relative measure of robustness, generally does not quantify life attributes)
- Requires multiple tests and specialized facilities to address the total spectrum of stressing environments
- Number of specimens insufficient to quantify random failures
<table>
<thead>
<tr>
<th>QUAL TEST</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMAL CYCLING</td>
<td>-40 to +90</td>
<td>-40 to +90</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Range (°C)</td>
<td>100</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUMIDITY CYCLING</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>85</td>
<td>*No cycling, 70°C Constant for 168 h</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>+70*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp. Range (°C)</td>
<td>-23 to +40</td>
<td></td>
<td></td>
<td></td>
<td>-40 to +85</td>
<td></td>
</tr>
<tr>
<td>Number cycles</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>MECHANICAL CYCLING</td>
<td></td>
<td>± 2.4</td>
<td></td>
<td></td>
<td>10,000</td>
<td>*Excluding shingle modules</td>
</tr>
<tr>
<td>Pressure (kPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number Cycles</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>WIND RESISTANCE (kPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.7*</td>
<td>*Shingles only</td>
</tr>
<tr>
<td>TWISTED MOUNT (mm/m)</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAIL IMPACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Terminal Velocity (m/s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>Num. Impacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>HOT-SPOT HEATING (h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL ISOLATION (volts)</td>
<td></td>
<td>1500</td>
<td></td>
<td></td>
<td>2000*</td>
<td>*1500 for resid. modules</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3000*</td>
<td></td>
</tr>
</tbody>
</table>
JPL's Role in National PV Program Sunsetted in the Early 1990's
• Overall closed-loop performance measurement process is critical to reliability identification & quantification
 • Full-up systems providing definitive operational feedback
 • Mechanism-level & life testing for root-cause identification
 • Qual tests for quick production screening

• Module Technology Devel. is critical to reliability growth
 • Encapsulation systems development (EVA, Tedlar, primers, etc)
 • Requirements Refinement (natural environments, UL 1703, NEC 690)
 • Engineering Tech Base Development (fatigue, corrosion, glass strength, hail resistance, hot-spot heating, voltage breakdown, electrochemical corrosion, UV-thermal degradation, etc)
 • Improved failure analysis and measurement techniques
Summary Lessons (Con't)

- Rapid open communication between all stakeholders is critical to rapid reliability improvement
 - Rapid Problem Identification and communication
 - Resolution Teamwork across many organizations (JPL FSA project had 131 organizations under contract; Engineering (ES&R, Module Proc, & Encapsulation) had a total of 37 organizations under contract)

- In total, over 380 of the key reports resulting from the Engineering and Reliability activities of the FSA Project are cataloged on the JPL web site:
 http://www2.jpl.nasa.gov/adv_tech/photovol/PV_pubs.htm