Chapter 6. Electromagnetic Phenomena CONTINUEDThe Doppler Effect![]()
Consider the following: 1. When the distance between the source and receiver of electromagnetic waves remains constant, the frequency of the source and received wave forms is the same. This is illustrated at right. The waveform at the top represents the source, and the one at the bottom represents the received signal. Since the source and the receiver are not moving toward or away from each other, the received signal appears the same as the source. 2. When the distance between the source and receiver of electromagnetic waves is increasing, the frequency of the received wave forms appears to be lower than the actual frequency of the source wave form. Each time the source has completed a wave, it has also moved farther away from the receiver, so the waves arrive less frequently. 3. When the distance is decreasing, the frequency of the received wave form will be higher than the source wave form. Since the source is getting closer, the waves arrive more frequently. There is a useful interactive graphic linked here. Cases 2 and 3 are illustrated below. Notice that when the receiver is in motion toward or away from the source, the waveform at the receiver (the lower waveform) changes. It only changes, though, while there is actual motion toward or away; when it stops, the received waveform appears the same as the source.
A spacecraft's revolutions around another planet such as Mars adds alternating positive and negative frequency biases to the received signal, as the spacecraft first moves toward and then away from Earth. The Earth's daily rotation adds a positive frequency bias to the received signal as the spacecraft rises in the east at a particular tracking station, and it adds a negative frequency bias to the received signal as the spacecraft sets in the west.
The Earth's revolution about the sun adds a positive frequency bias to the received signal during that portion of the year when the Earth is moving toward the spacecraft, and it adds a negative frequency bias during the part of the year when the Earth is moving away.
Differenced DopplerIf two widely-separated tracking stations on Earth observe a single spacecraft in orbit about another planet, they will each have a slightly different view of the moving spacecraft, and there will be a slight difference in the amount of Doppler shift observed by each station. For example, if one station has a view exactly edge-on to the spacecraft's orbital plane, the other station would have a view slightly to one side of that plane. Information can be extracted from the differencing of the two received signals. Data obtained from two stations in this way can be combined and interpreted to fully describe the spacecraft's arc through space in three dimensions, rather than just providing a single toward or away component. This data type, differenced Doppler, is a useful form of navigation data that can yield a very high degree of spatial resolution. It is further discussed in Chapter 13, Spacecraft Navigation.
|
![]() | PRECEDING PAGE | | | NEXT PAGE |
![]() |
SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories 5 Planetary Orbits 6 Electromagnetics
|
SECTION II FLIGHT PROJECTS 7 Mission Inception 8 Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation
|
SECTION III FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter 17 Extended Operations 18 Deep Space Network |